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Overview

I First, we’ll discuss the core idea of the paper, relaxed perturb-and-MAP,
abstracting over parsing-specific details - this is what can actually be of use to the
class.

I Then we can discuss the idea’s application to parsing, if people care.
(But we still won’t discuss the Eisner algorithm.)
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General Treatment
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Problem Statement

In NLP, we often want model some discrete structure given an input observation.
(Let’s call this inference)

I Observation x ∈ X = X1 ×X2 × · · · ,
(e.g., X = set of variable length discrete sequences in vocab)

I Inferred structure y ∈ Y = Y1 × Y2 × · · · ,
(e.g., Y = set discrete label sequences, discrete segmentation, grammar derivation)

I Want to learn: pφ(y|x) : X → ∆Y

I Want to predict: ŷ ← arg max
y′∈Y

pφ(y′|x)
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Modeling Inference: Motivating Approaches

What are ways people approach this?

Why not just use a tractable generative model? (e.g., HMM or PCFG)
pθ(y1:M |x) ∝ pθ(y1:M , x)

I They are too restrictive in the modeling assumptions

I ⇒ They underperform, discriminative (conditional) models work better

Ok, use directed (locally normalized) conditional model: pφ(y1:M |x) =
M∏
i=1

pφ(yi|y<i, x)

I No longer need independence assumptions on inputs (think naive bayes vs. logistic
regression) or outputs for that matter

I But there’s the problem when predicting structures:
directed conditional models have a limited ability for later decisions to revise earlier
ones, especially with beam-search
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Modeling Inference: CRFs

Conditional Random Fields: Structure is influenced bidirectionally

I If your model decoding order doesn’t reflect a causal process,
undirected model is probably more appropriate

Instead of local normalization:

pφ(y1:M |x) =
M∏
i=1

pφ(yi|y<i, x) =
M∏
i=1

exp{φ(yi|y<i, x)}∑
y
′
i

exp{φ(y′i|y<i, x)}

Global normalization:

pφ(y1:M |x) =

M∏
i=1

exp{φ(yi|y<i, x)}

∑
y
′∈Y

M∏
i=1

exp{φ(y′i|y<i, x)}

︸ ︷︷ ︸
Zφ(x)

When φ factor graph for y is a tree, Zφ(x) is computable in polynomial time with
dynamic programming (e.g., forward-backward, sum-product)
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Semi-Supervised Learning

For semi-supervised learning, generative models are an attractive solution for learning on
additional unsupervised data

I Principled: optimize marginal likelihood

I Prior can impose regularization

I Appropriate generative model can provide useful signal for inference

Embed our CRF inference model as the amortized approximate posterior in an VI setup!
New setup, unsupervised case:

pθ(x)pθ(y|x), qφ(y|x)← pφ(y|x)

log pθ(x) ≥ Ey∼qφ [logpθ(x|y)]−KL(qφ||pθ(y))

One MAJOR problem though, the usual one:

I What about ∇φEy∼qφ [log pθ(x|y)] ?

I REINFORCE is often very poorly behaved in these situations
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Remember Gumbel-Softmax?

Can draw a sample from a categorical with

ỹ = arg max
y′
{log πy′ + γy′}, γy′ ∼ G(0, 1)

and can draw a “relaxed” sample with

ỹr =
exp{log πy′ + γy′}∑
y′

exp{log πy′ + γy′}
, γy′ ∼ G(0, 1)
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Relaxed Perturb-and-MAP
(Gumbel-Softmax for tractable CRFs)

Can draw a sample from a CRF using Perturb-and-MAP [Papandreou and Yuille ’11]

ỹ = arg max
y∈Y

qφ+γ̃(y|x)

Gradient of log partition function is the joint distribution [Eisner ’16, Mencsh and
Blondel ’18]

∇ logZφ(x) = qφ(y|x)

and it’s zero temperature limit is the MAP estimate (as one-hots)

∇ logZφ(x; τ) = qφ(y|x; τ)
τ→0−−−→ arg max

y∈Y
qφ(y|x)

So we have that the gradient of the perturbed partition function converges to a sample
as the temp approaches zero

∇ logZφ+γ̃(x; τ) = qφ+γ̃(y|x; τ)
τ→0−−−→ arg max

y∈Y
qφ+γ̃(y|x) = ỹ

Takeaway: Perturb and temper potentials, then run inference
⇒ Marginals are a relaxed sample from the CRF
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Application to Dependency Parsing
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Dependency Parsing

Dependency grammar is a formalism of syntax for how words modify each other in a
sentence

Figure: Example dependency structure

It can be represented as an adjacency matrix A (ignoring labels) where columns A·,j
sum to 1.

An entry at Ai,j = 1 if the edge xi → xj exists.

Trees are also projective – no crossing edges.
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Inference Model

Model can be viewed as a CRF, with a potential for each cell in the matrix plus a
special fully connected factor that ensures the tree constraints.

The model potential scores for some valid tree T are

qφ(T |x) =
exp{φ(T,W (x))}∑

T ′∈T
exp{φ(T ′,W (x)} , φ(T,W ) =

n+1∑
i=1

n+1∑
j=1

TijWij(x)

Projectivity of the tree implies that the argmax and marginals can be inferred in O(n3)
(Eisner’s Algorithm)

Also have a latent sentence vector qφ(z|x) ∼ N (µ(x), σ2(x)) from sentence encoding
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Generation

Assume a generative model, for known sentence length n :

I z ∼ p(z|n) = N (0, Id)

I T ∼ p(T |n) . Uniform distribution of rooted projective tree matrices

I x1:n ∼ pθ(x1:n|z, T, n) =
n∏
i=1

pθ(xi|x<i, z, T≤i,≤i)
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Semi-Supervised Learning

They use the standard Semi-supervised VAE objective:

JL(θ, φ;x, T ) = Eqφ(z|x)[log pθ(x|T, z)]︸ ︷︷ ︸
Eε[log pθ(x|T,zφ(x,ε))]

−αzKL(qφ(z|x)||p(z)) + log qφ(T |x)

JU (θ, φ;x) = Eqφ(z,T |x)[log pθ(x|T, z)]︸ ︷︷ ︸
EP,ε[log pθ(x|Tφ(x,P ;τ),zφ(x,ε))]

−αzKL(qφ(z|x)||p(z))−αTKL(qφ(T |x)||p(T ))

L(θ, φ;DL,DU ) = E(x,T )∼DL [JL] + E(x)∼DU [JU ]

Note: Strange balancing of objectives – OK, due to a combo of the datasets not being
too heavily imbalanced towards DU and the small KL weights reducing the impact of
unsupervised regularization
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Experiments

Test the state-of-the-art parsing architecture on three standard datatsets:

Figure: Dataset info.

Figure: Results: Edge Precision / Recall. Considerable improvement from unlabeled
data, approaches fully supervised performance w/ 10% of the data

Worth noting: have to set KL weight for T to 0 and z to .1
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