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This Talk

Concerned here with the intersection of:

Joint distributions involving text and its continuous and/or discrete correlates (e.g. representations or annotations of the text)

Using flexible, compositional neural networks to parameterize these distributions

Methods form core thread, but their wide applicability demonstrated through survey of their uses in NLP



Outline

• VAEs 

• Continuous Variables


• Optimization Issues: Posterior Collapse


• Topic Modeling


• Discrete Variables and Semi-supervised Learning


• Neural CRFs 

• Exact Inference


• Approximate Inference


• VAEs for Discrete Structure: Semi-Supervised Learning 

• Viewing Attention as a Latent Variable
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Quick roadmap:

* First we’ll discuss Variational Autoencoders and their many flavors in NLP

* Then we’ll discuss neural CRFs for bridging SOTA neural architectures with structured outputs

* Then we’ll discuss intersection of these two concepts for semi-supervised learning in NLP

* And finally we’ll wrap up with a discussion of the connections of attention (now ubiquitous in NLP) to more formal characterizations of latent variables
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So quickly we’ll set up the variational inference problem



Background: 
 Variational Inference
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Unsupervised setting:

* Observe dataset, text always BOW or Seq of Words

* We’ll have a generative model of the text with latent vars per datapoint

* We’d like to learn model by maximizing the marginal likelihood of the data and do posterior inference

* But the marginal likelihoods are intractable integral because of some combo of NN or infinite/high dimensional latent var

* Variational inference reframes inference and optimization of marginal likelihood using an approximate posterior q

* However, we can rewrite the marginal for any proposal q as …

* and we know the KL with posterior is always positive

* so we can drop it and optimize a lower bound using an approximate posterior
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But first, we’ll outline VAEs because they’re involved in > 2/3 of the papers


What we’re going to see is they solve two problems:

* They show how to get low-variance unbiased gradients wrt phi

* They show how to use a “recognition network” for approximate posterior q to allow for fast inference that generalizes to new datapoints
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Which brings us to our first two papers, published contemporaneously:

* Here’s our loss function again, which we need to further approximate with monte-carlo because p_theta is expensive to evaluate (a DNN)

* Note: KL is typically analytically tractable

* How to optimize? gradient descent would be great (simple, autodiff very powerful framework)

* We can easily get gradient wrt theta, but have problems with phi…

* Which brings us to first contribution: for a normally distributed z, we can reparameterize as deterministic function of standard noise

* So we can rewrite the expectation and now we can get low-variance unbiased gradients wrt phi
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Amortized Inference = Inference Network 

zϕx
(ϵ) → zϕ(ϵ, x) = μϕ(x) + σϕ(x)ϵ

x μ
σ

z ̂x

ϵ

ϕ θ

[Kingma & Welling 14]                               [Rezende et al. 14]

* Now that we can get gradients wrt phi, why not also predict these params themselves with a DNN,

* allowing for generalization across instances and fast inference at test time

* This is the variational autoencoder


Again, they solve two problems:

* They show how to get low-variance unbiased gradients wrt phi

* They show how to use a “recognition network” for approximate posterior q to allow for fast inference that generalizes to new datapoints
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With VAEs in hand, now we’ll look at their first applications to NLP


All of these papers use autoencoders with stochastic latent representations for document/sentence modeling, but each model the problem a bit differently




Generating Text from Continuous 
Latent Space with VAEs

[Miao et al. 16a]

x μ
σ

z ̂x

ϵ
MLPϕ

MLPθ

x ∈ {0,1}|V| z ∈ ℝd ̂xi ∼ Bin( ⋅ )

ϵ ∼ 𝒩(0,Id)
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First Miao used VAEs for learning dense representations of documents in a bag-of-words model

* It gets better likelihoods than prior models, such as LDA

* But since its BOW, can’t actually generate any text, really just for inference


Then Bowman published a VAE for sequence reps of documents using a seq2seq model with a latent gaussian

* While they were first to do VAE for text generation

* The results are largely negative — the model is not able to outperform a standard RNN lang model

* Because of serious optimization issues called posterior collapse, which we’ll get into next

* Their solution is to anneal the KL term, which is necessary to get the model to use z at all


Finally we have Guu, who also use an autoencoder, but there method is semi-parametric

* Instead of generating a sentence from scratch, they sample a “prototype” sentence from the training data and an “edit” vector, then use a seq2seq model to make 

simple changes to the prototype for generation

* This yields good results

* and interestingly, the approximate posterior is essentially fixed which drives learning of the generative model posterior — basically the reverse of how we’d normally 

think about it

* Also, they don’t use a normal distribution, they use a product of magnitude (uniform) and direction (vonMises) distributions to get around posterior collapse, which we’ll 

discuss in the next section
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Latent Space with VAEs
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Paper, Task Contributions Limitations

[Miao et al. 16a] 
bag-of-words 
representation

First document VAE, 

better likelihood than LDA

No word order information:

cannot generate 
grammatical text

[Bowman et al. 16] 
sentence generation

First text VAE with word 
order in generation

Posterior collapse: 
underfits

[Guu et al. 18] 
sentence generation

1. Editing prototypes 
easier than from scratch


2. Fixed inference 
shapes generative 

model

Poor generation far from 
training data because of 

simple edits from non-
parametric samples

They represent the docs a bit differently, but really just different flavors of this idea.
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[Yang et al. 17] 

[Xu & Durrett 18] 

[Kim et al. 18] 

[He et al. 19]

Gen

NN NLP

CRF

Next we’ll dive into the super-prominent optimization issue in VAEs: posterior collapse and discuss approaches to mitigating its deleterious effects



Posterior Collapse
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pθ(x1, …, xN |z) =
N

∏
i=1

pθ(xi |x<i, z)Autoregressive 
Decoder

Most models which try to model actual word order, such as Bowman and Guu, will use an autoregressive RNN Language Model, which factorizes as…


This yields, for a single sample of z, the ELBO …


Posterior collapse is the phenomena where the model gets trapped a bad local optimum early in training


Where the KL goes to 0 and z contains no information about x


And the generative model convergese to an autoregressive that ignores this z
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Mitigating Posterior Collapse
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One of the first papers to successfully deal with this problem is Yang et al.

* They propose to solve it by limiting the dependency structure generative model using dilated convolutions, preventing the model from seeing too much history

* They find that while this helps and are first to get LL above RNNLM, but there is a clear tradeoff in decoder capacity and use of z


Xu and Durrett take a different tack:

* They address the problem by switching the latent var distribution to a Fisher vonMises dist, which puts mass on the unit hyper-sphere

* By doing this, the KL term no longer depends on mu and effectively becomes a tunable hyperparameter of the model, allowing for tuning the balance of contribution 

between reconstruction and KL to LL of sentences

* This works quite well in practice, but now we’ve introduced another hyperparameter, kappa, that needs tuning
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[Yang et al. 17] [Xu & Durrett 18]

KL(qκ(zϕ(α)) | |p(α)) ⊥ ϕ

One of the first papers to successfully deal with this problem is Yang et al.

* They propose to solve it by limiting the dependency structure generative model using dilated convolutions, preventing the model from seeing too much history

* They find that while this helps and are first to get LL above RNNLM, but there is a clear tradeoff in decoder capacity and use of z


Xu and Durrett take a different tack:

* They address the problem by switching the latent var distribution to a Fisher vonMises dist, which puts mass on the unit hyper-sphere

* By doing this, the KL term no longer depends on mu and effectively becomes a tunable hyperparameter of the model, allowing for tuning the balance of contribution 

between reconstruction and KL to LL of sentences
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ϕ*t = arg max
ϕ

L(θ*t−1, ϕ; X), θ*t = arg max
θ

L(θ, ϕ*t ; X)

ϕ*t , θ*t = arg max
ϕ,θ

L(θ, ϕ; X)

Inner optimization, tighter lower bound

Simultaneous Updates

Two more recent approaches approach the problem from a different perspective: changing the optimization problem


They both argue that the issue is the proposed variational parameters from the inference network are suboptimal and propose to solve it by optimizing the variational 
parameters in an inner loop


Kim et al solve this by using the inference net params as initializations for traditional meanfield stochastic variational inference, then solve that optimization in an inner 
loop with SGD and backprop through the entire process

* This empirically helps significantly, and they are the first to get non-zero KLs in latent gaussian and SOTA lang model perplexities without compromising the generator 

* But their method is incredibly slow (10-15x slowdown)


He et al propose a much simpler modification: 

* They simply optimize the inference network to convergence on an inner loop only for the first few epochs of training

* This leads to even better scores at only 3-5x slowdown
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[He et al. 19][Kim et al. 18]
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Paper, Task Contributions Limitations

[Yang et al. 17] 
sentence generation

First text VAE that

outperforms 

autoregressive RNN-LM

Must restrict generative 
architecture to use limited 

historical context

[Xu & Durrett 18] 
sentence generation

Exchange latent Gaussian 
for vonMises-Fisher leads 
to better performance  

w/o collapse

Must treat latent variance 
as hyperparameter, else 

collapse comes back. Also, 
comparison is unfair

[Kim et al. 18] 
sentence & image 

generation

Use amortized prediction 
as initialization for SVI 

and backprop through it all

Very slow training 
 (>10x vanilla VAE),


difficult to implement

[He et al. 19] 
sentence & image 

generation

Aggressively optimize 
inference network until it 
matches model posterior

Still requires an inner 
optimization during early 

training stages

Posterior collapse is a massive issue for VAEs in NLP because of the strong autoregressive decoder that can easily do well in optimization w/o using the noisy latent 
variables


The first two methods propose to solve it by restricting the generative family/architecture in some way, but this trades away modeling flexibility


The second two propose a more principled approach that doesn’t limit the model, but the trade off here now is that training is a bit slower.
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[Srivastava & Sutton 17] 

[Miao et al. 17]

Gen

NN NLP

CRF

All of the previous approaches were concerned with generation using continuous latent variables.


The next topic is using VAEs for topic models.


VAEs for topic models are better than traditional close-form update approaches for two reasons:

* Neural nets can easily cope with additional context information, allowing custom flavors of topic models to be rapidly developed

* Amortized inference in topic models allows for quick inference at test time




VAEs for Topic Models

!18

Srivastava and sutton provide the first successful VAE for LDA. 

* They do this on the collapsed model by constructing a laplace approximation to the dirichlet prior and inferring/sampling topic distributions theta using a logistic 

normal.

* The approach works, but in practice they find that optimization is brittle and must be carefully tuned to avoid collapse of the inferred thetas to either 1-hot or uniform 

optima


Miao et al extend this model by constructing a potentially infinite topic model

* They do this by using the stick-breaking construction of topic proportions in theta and parameterize the construction with an RNN. The whole thing is differentiable 

which is very cool

* One issue is that they must decide the number of “active” topics by have the RNN propose on extra topic on each minibatch and measuring if there’s an change in the 

ELBO w/ and w/o the additional topic — they do not “infer” the number of topics for each document
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VAEs for Topic Models
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Paper, Task Contributions Limitations

[Srivastava & Sutton 17] 
bag-of-words 
representation

Showed how to 
successfully train 
reparameterized, 

amortized 
inference for LDA

Brittle — Optimization 
must be carefully tuned to 
avoid posterior collapse

[Miao et al. 17] 
bag-of-words 
representation

Extends VAE-LDA to 
predict variable number  

of topics

Number of topics is not 
inferred — requires 

repeated evaluations of 
likelihood for stopping 

criterion

Amortized inference for topic models is an interesting application of VAEs because they are widely used models and alleviating the need for optimization at test time 
makes them much more applicable. 


Further, the use of NN parameterizations allows for quick, flexible alterations of the model (such as conditioning on other context) that previously was difficult using mean 
field with coordinate ascent.
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[Wen et al. 17] 

[Yang et al. 17] (again)

Gen

NN NLP

CRF

Ok, so far our latent variables have all been continuous

(the topic model papers dealt marginalized the discrete latent variables out)


Next we’ll discuss two papers that use discrete latent variables, that correspond to some classification of the input, and they can derive learning signal for the classifier 
on unlabeled data using the ELBO in addition to supervised data for better performance


We’ll see that you make minor changes the variational objective to cope with observed data




Classification as Inference in 
Semi-supervised VAEs

!21

𝒟 = {xk}DU
k=1 ∪ {(xk, yk)}DL

k=1Data

!21

The semi-supervised VAE setup is as follows:

* Now we have additional data that’s labeled

* And our model now depends on a per-instance discrete variable


Then we can write down a pair of ELBOs, one for each situation

* This yields the final update, which has an extra cross entropy term for optimizing q(y) on the labeled data, otherwise there’s no update for q(y) on the labeled data
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JL(θ, ϕ; x, y) = 𝔼qϕ(z|y,x)[log pθ(x |y, z)] − KL(qϕ(z |y) | |p(z)) + log p(y)

ELBO (per    ) k
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* And our model now depends on a per-instance discrete variable


Then we can write down a pair of ELBOs, one for each situation

* This yields the final update, which has an extra cross entropy term for optimizing q(y) on the labeled data, otherwise there’s no update for q(y) on the labeled data
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JL(θ, ϕ; x, y) = 𝔼qϕ(z|y,x)[log pθ(x |y, z)] − KL(qϕ(z |y) | |p(z)) + log p(y)

J(θ, ϕ; 𝒟) = 𝔼(x)∼𝒟U
[JU] + 𝔼(x,y)∼𝒟L

[JL] + α𝔼(x,y)∼𝒟U
[log q(y |x)]

ELBO (per    ) k

The semi-supervised VAE setup is as follows:

* Now we have additional data that’s labeled

* And our model now depends on a per-instance discrete variable


Then we can write down a pair of ELBOs, one for each situation

* This yields the final update, which has an extra cross entropy term for optimizing q(y) on the labeled data, otherwise there’s no update for q(y) on the labeled data
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Paper, Task Contributions Limitations

[Yang et al. 17] (again) 
sentence classification 

& generation

Use semi-supervsed VAE 
for learning text-

classification and 
Gumbel-Softmax samples 

for reduced gradient 
variance over REINFORCE

Observe large trade-off in 
classification and 

generation performance 

[Wen et al. 17] 
dialogue interpretation 
& response generation

Use semi-supervised VAE 
for learning to infer 

dialogue intentions then 
generate responses in 

complex neural 
architecture

Variational objective 
yields poor performance 

— model must be fine-
tuned with RL on task 

success objective.  

Even then, only marginal 

improvement

The idea of treating annotations as latent variables and doing semi-supervised with a VAE is a very interesting one

* Yang et al do this for classification, although they find there is a tradeoff in classification and generation performance — as modelers, we must decide which is more 

important to us

* Wen et al do something similar by embedding classification of user “intention” as a submodule in a complex neural conversational agent.

* They however use REINFORCE and find that optimization of the variational objective alone leads to performance well below state of the art
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Even then, only marginal 

improvement

The idea of treating annotations as latent variables and doing semi-supervised with a VAE is a very interesting one

* Yang et al do this for classification, although they find there is a tradeoff in classification and generation performance — as modelers, we must decide which is more 

important to us

* Wen et al do something similar by embedding classification of user “intention” as a submodule in a complex neural conversational agent.
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[Lample et al. 16] 

[Greenberg et al. 18] 

[Durrett & Klein 15] 

[Kitaev & Klein 18]

Gen

NN NLP

CRF

Now we’ll take a brief tour through applications of undirected graphical models — conditional random fields with neural factors.


Structured outputs are common in many NLP tasks, such as tagging and parsing, and CRFs represent a strong class of models for enforcing structural constraints in 
these problems, while neural nets have become standard for their representational capacity. The next set of papers illustrate that these two modeling techniques are 
mutually beneficial



Neural CRFs: Sequences
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p(y1:N |x) =
exp{ψθ(x, y1:N)}

∑
y′�1:N∈𝒴

exp{ψθ(x, y1:N)}
=

exp{ψθ(x, y′�1:N)}
Z(θ, x)

A prime example of neural CRF use in NLP are tagging problems, where we have specific dependencies between neighboring tags, since they follow a grammar.


Lample et al were the first to illustrate the mutual benefits of a neural sequence CRF for named entity recognition, learning language-agnostic orthographic features (what 
names look like at the character level) completely from data and using a CRF layer on top to alleviate decoding errors made by independent-output neural models


More recently, Greenberg et al showed that data from multiple potentially overlapping annotation datasets (for differing tasks) exhibiting partially overlapping label sets 
could be combined by optimizing the marginal likelihoods of the observed labels. This wouldn’t work in an independent model, since unobserved tags have no effect on 
neighboring tag  — the model could never learn to predict the O tag



Neural CRFs: Sequences

!24

[Lample et al. 16] 

p(y1:N |x) =
exp{ψθ(x, y1:N)}

∑
y′�1:N∈𝒴

exp{ψθ(x, y1:N)}
=

exp{ψθ(x, y′�1:N)}
Z(θ, x)

A prime example of neural CRF use in NLP are tagging problems, where we have specific dependencies between neighboring tags, since they follow a grammar.


Lample et al were the first to illustrate the mutual benefits of a neural sequence CRF for named entity recognition, learning language-agnostic orthographic features (what 
names look like at the character level) completely from data and using a CRF layer on top to alleviate decoding errors made by independent-output neural models


More recently, Greenberg et al showed that data from multiple potentially overlapping annotation datasets (for differing tasks) exhibiting partially overlapping label sets 
could be combined by optimizing the marginal likelihoods of the observed labels. This wouldn’t work in an independent model, since unobserved tags have no effect on 
neighboring tag  — the model could never learn to predict the O tag



Neural CRFs: Sequences

!24

[Greenberg et al. 18] [Lample et al. 16] 

p(y1:N |x) =
exp{ψθ(x, y1:N)}

∑
y′�1:N∈𝒴

exp{ψθ(x, y1:N)}
=

exp{ψθ(x, y′�1:N)}
Z(θ, x)

A prime example of neural CRF use in NLP are tagging problems, where we have specific dependencies between neighboring tags, since they follow a grammar.


Lample et al were the first to illustrate the mutual benefits of a neural sequence CRF for named entity recognition, learning language-agnostic orthographic features (what 
names look like at the character level) completely from data and using a CRF layer on top to alleviate decoding errors made by independent-output neural models


More recently, Greenberg et al showed that data from multiple potentially overlapping annotation datasets (for differing tasks) exhibiting partially overlapping label sets 
could be combined by optimizing the marginal likelihoods of the observed labels. This wouldn’t work in an independent model, since unobserved tags have no effect on 
neighboring tag  — the model could never learn to predict the O tag



Neural CRFs: Trees

!25

[Durrett & Klein 15]

p(T |x) =
exp{ψθ(x, T )}

∑
T′�∈𝒯

exp{ψθ(x, T′�)}
=

exp{ψθ(x, T′�)}
Z(θ, x)

… …}

    Encoder

A similar story can be told with tree-parsing.  Durrett and Klein were the first to introduce neural crf parsing and their relatively simple learned MLP features outperformed 
hand-crafted features.


Years later, Kitaev and Klein showed that a dramatic increase in performance can be obtained just by switching out the encoder layer with state-of-the-art sentence 
encoding architectures, illustrating that the fusion of CRFs with neural nets are essentially decoupled.



Neural CRFs: Trees

!25

[Kitaev & Klein 18]
[Durrett & Klein 15]

p(T |x) =
exp{ψθ(x, T )}

∑
T′�∈𝒯

exp{ψθ(x, T′�)}
=

exp{ψθ(x, T′�)}
Z(θ, x)

A similar story can be told with tree-parsing.  Durrett and Klein were the first to introduce neural crf parsing and their relatively simple learned MLP features outperformed 
hand-crafted features.


Years later, Kitaev and Klein showed that a dramatic increase in performance can be obtained just by switching out the encoder layer with state-of-the-art sentence 
encoding architectures, illustrating that the fusion of CRFs with neural nets are essentially decoupled.



Exact Neural CRFs

!26

Paper, Task Contributions Limitations
[Lample et al. 16] 

named entity 
recognition

First to show that tagging 
CRF can be combined with 
powerful neural features 

Tagging CRF known to be 
suboptimal for 
segmentation

[Greenberg et al. 18] 
named entity 
recognition

Combine annotations from 
multiple datasets using 

CRF

Requires unequal tagsets 
for different datasets or it 
will not learn to predict “O”

[Durrett & Klein 15] 
constituency-syntax 

parsing

First to use tree CRF with 
neural features

Uses simplistic MLP 
features

[Kitaev & Klein 18] 
constituency-syntax 

parsing

Same CRF, but huge 
improvements using SOTA 

neural text encoding 
architecture

Further improvements 
can be obtained with BERT 

encoder pretraining

In NLP our output is often heavily structured, and conditional random fields are a great tool for representing the dependencies among outputs,

* Further they are completely amenable to having their potentials predicted using neural networks and are end-to-end trainable thanks to the differentiability of the sum-
product algorithm
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!27

[Ganea & Hofmann 17] 

[Andor et al. 16]

Gen

NN NLP

CRF

Often we want to learn models with globally normalized structures that do not permit tractable exact inference. 


These next two papers illustrate how to exploit approximate inference in neural and still learn the models end-to-end.



Handling Intractable CRFs

!28

Z(θ, x) is often intractable for interesting joint factorizations

Credit: [https://www.cs.cmu.edu/~epxing/Class/10715/lectures/lecture12-CRF.pdf]

Unless the CRF exhibits a factorization that allows for computation of the partition function in polynomial time with dynamic programming, we must approximate it.


Ganea and Hofmann demonstrated one way of doing this in their neural entity-linking model. 

* The model incorporates pair-wise plausibility factors between all entities, allowing for a global disambiguation and learn the model by using truncated loopy belief 

propagation and optimizing the approximate marginals. 

* LBP is differentiable and so the model can be learned end-to-end. 

* LBP however has quadratic runtime which makes this model extremely slow for documents of appreciable size. 


Andor et al use a different approach to mitigate the well-known issue of label bias in locally normalized structured output models, with direct application to dependency 
parsing.

* They first train the model with the local objective, but then continue training using beam-search on the unnormalized scores and approximate the partition function 

using the mass on the beam

* They find that this significantly reduces label-bias.

https://www.cs.cmu.edu/~epxing/Class/10715/lectures/lecture12-CRF.pdf


Handling Intractable CRFs

!28

Z(θ, x) is often intractable for interesting joint factorizations

[Ganea & Hofmann 17]

Credit: [https://www.cs.cmu.edu/~epxing/Class/10715/lectures/lecture12-CRF.pdf]

pθ(e1, …, eM |x) = exp{
M

∑
i=1

[Ψθ(ei) + ∑
j<i

Φθ(ei, ej)]}/Z(θ, x)

Unless the CRF exhibits a factorization that allows for computation of the partition function in polynomial time with dynamic programming, we must approximate it.


Ganea and Hofmann demonstrated one way of doing this in their neural entity-linking model. 

* The model incorporates pair-wise plausibility factors between all entities, allowing for a global disambiguation and learn the model by using truncated loopy belief 

propagation and optimizing the approximate marginals. 

* LBP is differentiable and so the model can be learned end-to-end. 

* LBP however has quadratic runtime which makes this model extremely slow for documents of appreciable size. 


Andor et al use a different approach to mitigate the well-known issue of label bias in locally normalized structured output models, with direct application to dependency 
parsing.

* They first train the model with the local objective, but then continue training using beam-search on the unnormalized scores and approximate the partition function 

using the mass on the beam

* They find that this significantly reduces label-bias.

https://www.cs.cmu.edu/~epxing/Class/10715/lectures/lecture12-CRF.pdf


Handling Intractable CRFs

!28

Z(θ, x) is often intractable for interesting joint factorizations

[Ganea & Hofmann 17]

Credit: [https://www.cs.cmu.edu/~epxing/Class/10715/lectures/lecture12-CRF.pdf]

pθ(e1, …, eM |x) = exp{
M

∑
i=1

[Ψθ(ei) + ∑
j<i

Φθ(ei, ej)]}/Z(θ, x)

Unless the CRF exhibits a factorization that allows for computation of the partition function in polynomial time with dynamic programming, we must approximate it.


Ganea and Hofmann demonstrated one way of doing this in their neural entity-linking model. 

* The model incorporates pair-wise plausibility factors between all entities, allowing for a global disambiguation and learn the model by using truncated loopy belief 

propagation and optimizing the approximate marginals. 

* LBP is differentiable and so the model can be learned end-to-end. 

* LBP however has quadratic runtime which makes this model extremely slow for documents of appreciable size. 


Andor et al use a different approach to mitigate the well-known issue of label bias in locally normalized structured output models, with direct application to dependency 
parsing.

* They first train the model with the local objective, but then continue training using beam-search on the unnormalized scores and approximate the partition function 

using the mass on the beam

* They find that this significantly reduces label-bias.

https://www.cs.cmu.edu/~epxing/Class/10715/lectures/lecture12-CRF.pdf


Handling Intractable CRFs

!28

[Andor et al. 16]

Z(θ, x) is often intractable for interesting joint factorizations

[Ganea & Hofmann 17]

Credit: [https://www.cs.cmu.edu/~epxing/Class/10715/lectures/lecture12-CRF.pdf]

pθ(e1, …, eM |x) = exp{
M

∑
i=1

[Ψθ(ei) + ∑
j<i

Φθ(ei, ej)]}/Z(θ, x)

Unless the CRF exhibits a factorization that allows for computation of the partition function in polynomial time with dynamic programming, we must approximate it.


Ganea and Hofmann demonstrated one way of doing this in their neural entity-linking model. 

* The model incorporates pair-wise plausibility factors between all entities, allowing for a global disambiguation and learn the model by using truncated loopy belief 

propagation and optimizing the approximate marginals. 

* LBP is differentiable and so the model can be learned end-to-end. 

* LBP however has quadratic runtime which makes this model extremely slow for documents of appreciable size. 


Andor et al use a different approach to mitigate the well-known issue of label bias in locally normalized structured output models, with direct application to dependency 
parsing.

* They first train the model with the local objective, but then continue training using beam-search on the unnormalized scores and approximate the partition function 

using the mass on the beam

* They find that this significantly reduces label-bias.

https://www.cs.cmu.edu/~epxing/Class/10715/lectures/lecture12-CRF.pdf


Approximate Neural CRFs

!29

Paper, Task Contributions Limitations

[Ganea & Hofmann 17] 
entity linking

Backprop through loopy 
belief-propagation to 
handle intractable CRF

LBP has quadratic 
runtime, severely slowing 

down training and 

limiting size of possible 

candidate set

[Andor et al. 16] 
dependency-syntax 

parsing,  
part-of-speech tagging, 
sentence compression

Mitigate label-bias 
problem using intractable 
CRF and beam-search to 
approximate the partition 

function

Inexact: hoping beam 
approximates partition,

difficult to implement

Both of these papers provide alternative approaches to learning intractable neural crfs without sacrificing end-to-end training by backproping through the 
approximations.
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[Miao & Blunsom 16b] 

[Yin et al. 18] 

[Zhang et al. 17] 

[Corro & Titov 19]

Gen

NN NLP

CRF

Ok, now that we’ve discussed VAEs and Neural CRFs, we’re ready to discuss methods that for semi-supervised learning of discrete structured models.


Structured prediction is a crucial subfield of NLP as complex tasks have considerable dependencies among their outputs, while the complexity of the annotations also 
makes them more costly to obtain.


What we’ll see is that we can take our conditional structured output  model and embed it as inference in a generative model.


This allows for us to learn on additional unlabeled data by deriving learning signal from reconstructing the input and regularizing inference to the prior (which can be 
learned)




Semi-Supervised Learning for 
Structured Prediction 

!31

[Miao & Blunsom 16b]

pθ(c1, …, cM, s1, …, sN)

=
M

∏
i=1

pθ(ci |c<i)
N

∏
j=1

pθ(sj |s<j, c1:M)

First, Miao and Blunsom introduced a VAE model of sentence compression and generation where the latent variables are entire discrete sequences (the compressions).

* Their semi-supervised approach first trained both the inference, generative, and prior language model on the supervised data

*  They then continued training on unlabeled data, optimizing the inference model using the REINFORCE gradient estimator

* What’s interesting here is their use of a prior compression language model — this can be seen as an emprical bayesian prior


Yin et al do a very similar thing for learning to predict semantic parses from natural language by first converting the tree problem to a sequence problem by linearizing the 
trees.

* They then follow Miao and Blunsom in training



Semi-Supervised Learning for 
Structured Prediction 

!31

[Miao & Blunsom 16b] [Yin et al. 18]

pθ(c1, …, cM, s1, …, sN)

=
M

∏
i=1

pθ(ci |c<i)
N

∏
j=1

pθ(sj |s<j, c1:M)

First, Miao and Blunsom introduced a VAE model of sentence compression and generation where the latent variables are entire discrete sequences (the compressions).

* Their semi-supervised approach first trained both the inference, generative, and prior language model on the supervised data

*  They then continued training on unlabeled data, optimizing the inference model using the REINFORCE gradient estimator

* What’s interesting here is their use of a prior compression language model — this can be seen as an emprical bayesian prior


Yin et al do a very similar thing for learning to predict semantic parses from natural language by first converting the tree problem to a sequence problem by linearizing the 
trees.

* They then follow Miao and Blunsom in training



Semi-Supervised Learning for 
Structured Prediction 

!32

[Zhang et al. 17]

pθ( ̂x1:N |x1:N)

= ∑
y1:N∈𝒴

[pθ(y1:N |x1:N)
N

∏
i=1

pθ( ̂xi |yi)]

The previous two papers were for locally normalized latent sequences, but these next two embed CRFs as the inference models in VAE-like objectives.


Zhang et al don’t quite formulate the problem  as VAE, they instead consider a conditional model for reconstructing the input through an unobserved CRF — there is no 
“prior” on the tag sequences.

* They then use an extremely simple model words given tags, which allows them to calculate the marginal probability of reconstruction given the input using the forward 

algorithm.

* They do this for semi-supervised part of speech tagging and see decent improvements


More recently, Corro and Titov use the generalized perturb-and-map to get samples of dependency parse trees through the Eisner CRF algorithm by adding independent 
gumbel noise to the CRF factors and relaxing the argmax to a softmax, which yields “soft” dependency trees as samples.  They then embed this as the inference network 
in a VAE and find that it, like Zhang, yields considerable improvements over a supervised model.



Semi-Supervised Learning for 
Structured Prediction 

!32

[Corro & Titov 19][Zhang et al. 17]

pθ( ̂x1:N |x1:N)

= ∑
y1:N∈𝒴

[pθ(y1:N |x1:N)
N

∏
i=1

pθ( ̂xi |yi)]

The previous two papers were for locally normalized latent sequences, but these next two embed CRFs as the inference models in VAE-like objectives.


Zhang et al don’t quite formulate the problem  as VAE, they instead consider a conditional model for reconstructing the input through an unobserved CRF — there is no 
“prior” on the tag sequences.

* They then use an extremely simple model words given tags, which allows them to calculate the marginal probability of reconstruction given the input using the forward 

algorithm.

* They do this for semi-supervised part of speech tagging and see decent improvements


More recently, Corro and Titov use the generalized perturb-and-map to get samples of dependency parse trees through the Eisner CRF algorithm by adding independent 
gumbel noise to the CRF factors and relaxing the argmax to a softmax, which yields “soft” dependency trees as samples.  They then embed this as the inference network 
in a VAE and find that it, like Zhang, yields considerable improvements over a supervised model.



Semi-Supervised Learning for 
Structured Prediction 

!33

Paper, Task Contributions Limitations

[Miao & Blunsom 16b] 
sentence 

(de)compression

Embed seq2seq model in 
VAE and learn 

compression as latent 
variable sequence

Use of REINFORCE to 
yields limited 

improvement from 
unsupervised data

[Yin et al. 18] 
program semantic 

parsing

Semi-supervised VAE 
training for semantic 

parsing

Requires linearization of the 
tree, which ignores some of 

the problem structure

[Zhang et al. 17] 
part of speech tagging

Embed sequence CRF as 
inference network with 

simple generative model for 
tractable EM training

Generative model must be 
restricted to make 
objective tractable

[Corro & Titov 19] 
dependency-syntax 

parsing

Semi-supervised training 
of tree parsing, relaxed 

perturb-and-map samples 
through dynamic program

Requires architecture that 
can cope with “soft” 
dependency trees

The first two papers show how to train VAEs for semi-supervised learning with locally normalized inference distributions, while the second two show how to embed CRFs 
as latent variables and learn end-to-end


I think semi-supervised learning with structured latent variables is an exciting direction in the field.
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[Lei et al. 16] 

[Deng et al. 18] 

[Le & Titov 18] 

[Kim et al. 17] 

[Strubell et al. 18]

Gen

NN NLP

CRF

Ok, finally we’ll discuss the intersection of attention mechanisms, which have become a workhorse mechanism in NLP and their interpretation as latent variables.


What we’ll find is that attention and discrete latent variables have a lot in common — they both predict discrete distributions over sets of objects — and so we can use 
what we know about graphical models to enhance attention



A Latent View of Attention

!35

[Kim et al. 17]

Kim et al extend the typical categorical attention mechanism to use marginal probabilities of structured distributions as the attention scores. 

* This allows for neighboring attentions to be correlated, or, when using depency syntax CRF (not shown), for word representations to be influenced by their most likely 
syntactic dependency parents in the sentence 



A Latent View of Attention

!35

[Kim et al. 17]

p(z1 = i) =
exp{v⊤

q Whxi
}

N
∑
j=1

exp{v⊤
q Whxj

}

Kim et al extend the typical categorical attention mechanism to use marginal probabilities of structured distributions as the attention scores. 

* This allows for neighboring attentions to be correlated, or, when using depency syntax CRF (not shown), for word representations to be influenced by their most likely 
syntactic dependency parents in the sentence 



A Latent View of Attention

!35

[Kim et al. 17]

p(z1 = i) =
exp{v⊤

q Whxi
}

N
∑
j=1

exp{v⊤
q Whxj

}
c = 𝔼pθ(z|x,q)[hx]

Kim et al extend the typical categorical attention mechanism to use marginal probabilities of structured distributions as the attention scores. 

* This allows for neighboring attentions to be correlated, or, when using depency syntax CRF (not shown), for word representations to be influenced by their most likely 
syntactic dependency parents in the sentence 



A Latent View of Attention

!35

[Kim et al. 17]

p(z1 = i) =
exp{v⊤

q Whxi
}

N
∑
j=1

exp{v⊤
q Whxj

}

p(zi = 1) = σ(v⊤
q Whxi

+ b)

c = 𝔼pθ(z|x,q)[hx]

Kim et al extend the typical categorical attention mechanism to use marginal probabilities of structured distributions as the attention scores. 

* This allows for neighboring attentions to be correlated, or, when using depency syntax CRF (not shown), for word representations to be influenced by their most likely 
syntactic dependency parents in the sentence 



A Latent View of Attention

!35

[Kim et al. 17]

p(z1 = i) =
exp{v⊤

q Whxi
}

N
∑
j=1

exp{v⊤
q Whxj

}

p(zi = 1) = σ(v⊤
q Whxi

+ b)

p(zi = 1) ∝ exp{v⊤
q Whxi

+ log αi−1,1 + log βi+1,1}

c = 𝔼pθ(z|x,q)[hx]

Kim et al extend the typical categorical attention mechanism to use marginal probabilities of structured distributions as the attention scores. 

* This allows for neighboring attentions to be correlated, or, when using depency syntax CRF (not shown), for word representations to be influenced by their most likely 
syntactic dependency parents in the sentence 



A Latent View of Attention

!36

[Strubell et al. 18] p(xi = j) =
exp{h⊤

xi
Ahxj

}
N
∑
k=1

exp{h⊤
xi

Ahxk
}

Similarly, Strubell et al, which was the best paper at the most recent EMNLP.

* Like Kim’s tree-based attention, they identified a correspondence between self-attention and dependency-syntax. 

* They then directly supervised one of the attention heads in a transformer architecture to attend to syntactic parents, which provided huge improvements in 

representation learning for semantic role-labeling.




A Latent View of Attention

!36

[Strubell et al. 18] p(xi = j) =
exp{h⊤

xi
Ahxj

}
N
∑
k=1

exp{h⊤
xi

Ahxk
}

Similarly, Strubell et al, which was the best paper at the most recent EMNLP.

* Like Kim’s tree-based attention, they identified a correspondence between self-attention and dependency-syntax. 

* They then directly supervised one of the attention heads in a transformer architecture to attend to syntactic parents, which provided huge improvements in 

representation learning for semantic role-labeling.




A Latent View of Attention

!37

[Lei et al. 16]

pθ(y, z1:N |x1:N) = pθ(y |xz)pθ(z1:N |x1:N)

Lei al embedding a stochastic binary attention as a bottleneck in document aspect classification which forced the model to focus on important signal only, but they don’t 
treat it as a formal latent variable in VAE sense



A Latent View of Attention

!38

[Le & Titov 18]

Le and Titov extend the approximate CRF entity linking model of Ganea and Hofmann 

by encoding potential relations between entity mentions as latent variables in the model. 

* Instead of giving all pairs equal weight, this mechanism effectively weighs certain pairs more highly to favor the influence of pairs which are likely related in the text to 

the final disambiguation score



A Latent View of Attention

!38

[Le & Titov 18]

[Ganea & Hofmann 17]

Le and Titov extend the approximate CRF entity linking model of Ganea and Hofmann 

by encoding potential relations between entity mentions as latent variables in the model. 

* Instead of giving all pairs equal weight, this mechanism effectively weighs certain pairs more highly to favor the influence of pairs which are likely related in the text to 

the final disambiguation score



A Latent View of Attention

!38

[Le & Titov 18]

[Ganea & Hofmann 17]

pθ(e1, …, eM |x) = exp{
M

∑
i=1

[Ψθ(ei) + ∑
j<i

Φθ(ei, ej)]}/Z(θ, x)

Le and Titov extend the approximate CRF entity linking model of Ganea and Hofmann 

by encoding potential relations between entity mentions as latent variables in the model. 

* Instead of giving all pairs equal weight, this mechanism effectively weighs certain pairs more highly to favor the influence of pairs which are likely related in the text to 

the final disambiguation score



A Latent View of Attention

!38

[Le & Titov 18]

[Ganea & Hofmann 17]

pθ(e1, …, eM |x) = exp{
M

∑
i=1

[Ψθ(ei) + ∑
j<i

Φθ(ei, ej)]}/Z(θ, x)

Φθ(ei, ej) =
K

∑
k=1

αijkΦk
θ(ei, ej)

Le and Titov extend the approximate CRF entity linking model of Ganea and Hofmann 

by encoding potential relations between entity mentions as latent variables in the model. 

* Instead of giving all pairs equal weight, this mechanism effectively weighs certain pairs more highly to favor the influence of pairs which are likely related in the text to 

the final disambiguation score



A Latent View of Attention

!38

[Le & Titov 18]

[Ganea & Hofmann 17]

pθ(e1, …, eM |x) = exp{
M

∑
i=1

[Ψθ(ei) + ∑
j<i

Φθ(ei, ej)]}/Z(θ, x)

Φθ(ei, ej) =
K

∑
k=1

αijkΦk
θ(ei, ej)

Le and Titov extend the approximate CRF entity linking model of Ganea and Hofmann 

by encoding potential relations between entity mentions as latent variables in the model. 

* Instead of giving all pairs equal weight, this mechanism effectively weighs certain pairs more highly to favor the influence of pairs which are likely related in the text to 

the final disambiguation score



A Latent View of Attention

!39

[Deng et al. 18]

pθ(yi, zi | x̃, x1:N) = pθ(yi |zi, x̃, x)pθ(zi | x̃, x1:N)

Lastly, Deng et al model attention in machine translation formally as a latent variable in a VAE.


Viewing attention this way allows them to use an inference network that could consider the entire output when providing attention samples, in particular it can look at the 
word to be generated when computing attention.

* This provides more signal to the model samples and the KL term in the vae drives the forward attention towards this approximate posterior attention

* An interesting byproduct of this approach is that they also get a posterior inference model which can take a translation pair and infer alignments between them.



A Latent View of Attention

!39

[Deng et al. 18]

pθ(yi, zi | x̃, x1:N) = pθ(yi |zi, x̃, x)pθ(zi | x̃, x1:N)

log pθ(yi | x̃, x1:N) ≥ 𝔼qϕ(zi|yi,x̃,x1:N)[pθ(yi |zi, x̃, x)] − KL(qϕ(zi) | |pθ(zi))

Lastly, Deng et al model attention in machine translation formally as a latent variable in a VAE.


Viewing attention this way allows them to use an inference network that could consider the entire output when providing attention samples, in particular it can look at the 
word to be generated when computing attention.

* This provides more signal to the model samples and the KL term in the vae drives the forward attention towards this approximate posterior attention

* An interesting byproduct of this approach is that they also get a posterior inference model which can take a translation pair and infer alignments between them.



A Latent View of Attention (cont’d)

!40

Paper, Task Contributions Limitations

[Kim et al. 17] 
machine translation, 
question answering, 
 & natural language 

inference

Correlated attentions 
from tractable CRFs

Attentions are restricted to 
product of marginals, not 

joint distributions

[Strubell et al. 18] 
semantic role labeling

Supervise the attentions 
with separate labeled data, 
improving performance

Not guaranteed to 
produce proper 

dependency trees, 
missing structural 

constraints

These mechanisms also have much in common with graphical models — they induce unsupervised distributions over sets of objects.  This is important because attention 
mechanisms have become a mainstay in neural architectures for NLP, in part because they improve performance, in part because they provide some level of 
interpretability.
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Paper, Task Contributions Limitations

[Lei et al. 16] 
document aspect 

classification

Use hard binary attention 
as bottleneck for 

classification

Requires many rational 
samples per update for 

convergence

[Le & Titov 18] 
entity linking

Model latent relations 
between entities in joint 

disambiguation as an 
attention improves 

performance

Latent relations are 
unsupervised and therefore 
not grounded to known 

relations in the KG

[Deng et al. 18] 
machine translation

Attention as approximate 
posterior to condition on 

extra output during training

Difficult to optimize the 
model successfully

These papers illustrate that attention mechanisms can benefit greatly from latent-variable approaches, whether it by structured inference, cross-entropy supervision, 
stochasticity, reweighing the scoring factors, or using posterior inference to improve forward attention.



Conclusions

• Deep learning + graphical models: mutually beneficial


• Wide applicability in NLP


• Semi-supervised learning by embedding classification/
structured prediction as inference in generative model 


• Attention can be improved by ideas from structured/
latent variable models
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To wrap up, I hope I’ve convinced you that deep learning, generative models, and structured models all have a lot to offer each other in the field of NLP.


I particularly think the semi-supervised learning for neural structured outputs is an exciting direction for the field!



Thanks! 

Questions?
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Mitigating Posterior Collapse
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One of the first papers to successfully deal with this problem is Yang et al.

* They propose to solve it by limiting the dependency structure generative model using dilated convolutions, preventing the model from seeing too much history

* They find that while this helps and are first to get LL above RNNLM, but there is a clear tradeoff in decoder capacity and use of z


Xu and Durrett take a different tack:

* They address the problem by switching the latent var distribution to a Fisher vonMises dist, which puts mass on the unit hyper-sphere

* By doing this, the KL term no longer depends on mu and effectively becomes a tunable hyperparameter of the model, allowing for tuning the balance of contribution 

between reconstruction and KL to LL of sentences

* This works quite well in practice, but now we’ve introduced another hyperparameter, kappa, that needs tuning
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[Yang et al. 17] [Xu & Durrett 18]

L(θ, ϕ; x) = 𝔼q(α)[log pθ(x |zϕ(α; κ))]
−KL(qκ(zϕ(α)) | |p(α)),

KL(qκ(zϕ(α)) | |p(α)) ⊥ ϕ

One of the first papers to successfully deal with this problem is Yang et al.

* They propose to solve it by limiting the dependency structure generative model using dilated convolutions, preventing the model from seeing too much history

* They find that while this helps and are first to get LL above RNNLM, but there is a clear tradeoff in decoder capacity and use of z


Xu and Durrett take a different tack:

* They address the problem by switching the latent var distribution to a Fisher vonMises dist, which puts mass on the unit hyper-sphere

* By doing this, the KL term no longer depends on mu and effectively becomes a tunable hyperparameter of the model, allowing for tuning the balance of contribution 
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Topic Models
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A quick recap of standard LDA topic models.


We’re given a hyperparameter alpha that governs topic sparsity and a set K of topic word distributions as parameters

* Then for each document, we draw its topic distribution (a simplex vector) from a dirichlet prior

* Then for each word in the doc, we draw a discrete topic choice z_n

* Then we draw a word from the topic selected by z_n


The marginal probability of the data is given below.  Note that we can marginalize out the discrete topic choices easily, yielding what’s called the “collapsed” model. Now 
we only need to do inference on the topic proportions theta.
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Draw topic distribution
for each word in D

Sample topic
Sample word

α

zn ∼ Categorical(θ)
wn ∼ Categorical(βzn

)

p(w1:N |α, β) = ∫θ
(

N

∏
n=1

k

∑
zn=1

p(wn |zn, βzn
)p(zn |θ))p(θ |α)dθ

= ∫θ
(

N

∏
n=1

p(wn |β, θ))p(θ |α)dθ

θ ∼ Dirichlet(α)

β1:K
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Dirichlet Laplace Approximation

ELBO



Autoencoding Variational 
Inference For Topic Models

!50



Discovering Discrete Latent Topics 
with Neural Variational Inference

!51



Discovering Discrete Latent Topics 
with Neural Variational Inference

!52



Classification as Inference in 
Semi-supervised VAEs
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[Yang et al. 17] (again)

x z
CNNθ

y

ϵ

ϵ ∼ N(0,Id)

̂x

̂xi ∼ CatV( ⋅ )

y ∼ Cat𝒴(θ) ∨ Cat𝒴(πϕ(x))

μ
σ

LSTMϕ

x ∈ VN π

We can visualize this in a VAE architecture by looking back at Yang et al 17 — they also evaluate their dilated CNN decoder on semi-supervised classification


Here now our q(z) depends on y, which may be fixed or sampled.


The challenge here is gradients with respect to phi through y in the unsupervised case:

*  We cannot naively use the reparameterization trick on discrete variables

* If y is sufficiently small we can marginalize it out

* but if marginalizing isn’t reasonable, how can we get gradients wrt samples?

* but Yang et al use a recent development called the Gumbel-Softmax distribution, which reparameterizes a categorical sample using the gumbel-argmax trick, then 

relaxes the argmax to a softmax, allowing for gradients w.r.t phi through q(y) — pretty neat!
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* but if marginalizing isn’t reasonable, how can we get gradients wrt samples?
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[Yang et al. 17] (again) γ1:Y ∼i.i.d Gumbel(0,1)

x z
CNNθ

y

ϵ

ϵ ∼ N(0,Id)

̂x

̂xi ∼ CatV( ⋅ )

μ
σ

LSTMϕ

x ∈ VN

∇ϕy ?
π

γk

yi ∝ exp{log πi + γi}

* Yang et al use a recent development called the Gumbel-Softmax distribution, which reparameterizes a categorical sample using the gumbel-argmax trick, then 
relaxes the argmax to a softmax, allowing for gradients w.r.t phi through q(y) — pretty neat!
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[Yang et al. 17] (again) γ1:Y ∼i.i.d Gumbel(0,1)

x z
CNNθ

y

ϵ

ϵ ∼ N(0,Id)

̂x

̂xi ∼ CatV( ⋅ )

μ
σ

LSTMϕ

x ∈ VN

∇ϕy
π

γk

✔

yi ∝ exp{log πi + γi}

* Yang et al use a recent development called the Gumbel-Softmax distribution, which reparameterizes a categorical sample using the gumbel-argmax trick, then 
relaxes the argmax to a softmax, allowing for gradients w.r.t phi through q(y) — pretty neat!
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Credit: Bert-Huang https://www.youtube.com/watch?v=meBWAboEWQk

https://www.youtube.com/watch?v=meBWAboEWQk
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Local Normalization

Globally Normalized, Early Updates
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Credit: https://cs.nyu.edu/courses/spring17/CSCI-GA.2590-001/LabelBias.pdf

https://cs.nyu.edu/courses/spring17/CSCI-GA.2590-001/LabelBias.pdf
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Credit: https://cs.nyu.edu/courses/spring17/CSCI-GA.2590-001/LabelBias.pdf

https://cs.nyu.edu/courses/spring17/CSCI-GA.2590-001/LabelBias.pdf
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Variance Reduction: Control Variates
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[Kim et al. 17]

p(z1 = i) =
exp{v⊤

q Whxi
}

N
∑
j=1

exp{v⊤
q Whxj

}

p(zi = 1) = σ(v⊤
q Whxi

+ b)

p(zi = 1) =
exp{v⊤

q Whxi
+ log αi−1,1 + log βi+1,1}

∑
j∈{0,1}

exp{𝕀[ j]v⊤
q Whxi

+ log αi−1, j + log βi+1, j}

Le and Titov extend the approximate CRF entity linking model of Ganea and Hofmann by including a “relational” attention mechanism between pairs of entities. 

* Instead of giving all pairs equal weight, this mechanism effectively weighs certain pairs more highly to favor the influence of pairs which are likely related in the text to 

the final disambiguation score


Kim et al extend the typical categorical attention mechanism to use marginal probabilities of structured distributions as the attention scores. 

* This allows for neighboring attentions to be correlated, or, when using depency syntax CRF marginals, for word representations to be influenced by their most likely 
syntactic dependency parents in the sentence 



(11) Latent Intention Dialogue 
Models

!70

[Wen et al. 17]

x LSTMsϕ

y

̂x

̂xi ∼ CatV( ⋅ )y ∼ Cat𝒴(π)

π

st

x ∈ VN

c

Customθ


