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Concerned here with the intersection of:

Joint distributions involving text and its continuous and/or discrete correlates (e.g. representations or annotations of the text)
Using flexible, compositional neural networks to parameterize these distributions

Methods form core thread, but their wide applicability demonstrated through survey of their uses in NLP
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Quick roadmap:

* First we’ll discuss Variational Autoencoders and their many flavors in NLP

Then we’ll discuss neural CRFs for bridging SOTA neural architectures with structured outputs

Then we’ll discuss intersection of these two concepts for semi-supervised learning in NLP

And finally we’ll wrap up with a discussion of the connections of attention (how ubiquitous in NLP) to more formal characterizations of latent variables
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So quickly we’ll set up the variational inference problem




Background:
Variational Inference

Unsupervised setting:

Observe dataset, text always BOW or Seq of Words

We’ll have a generative model of the text with latent vars per datapoint

We’d like to learn model by maximizing the marginal likelihood of the data and do posterior inference

But the marginal likelihoods are intractable integral because of some combo of NN or infinite/high dimensional latent var
Variational inference reframes inference and optimization of marginal likelihood using an approximate posterior q
However, we can rewrite the marginal for any proposal q as ...

and we know the KL with posterior is always positive

so we can drop it and optimize a lower bound using an approximate posterior

* ok ok ok %k ok ok oF



Background:
Variational Inference

Data 9= (xX|2, xe (0,1} v xFe V"

Unsupervised setting:

Observe dataset, text always BOW or Seq of Words

We’ll have a generative model of the text with latent vars per datapoint

We’d like to learn model by maximizing the marginal likelihood of the data and do posterior inference

But the marginal likelihoods are intractable integral because of some combo of NN or infinite/high dimensional latent var
Variational inference reframes inference and optimization of marginal likelihood using an approximate posterior q
However, we can rewrite the marginal for any proposal q as ...

and we know the KL with posterior is always positive

so we can drop it and optimize a lower bound using an approximate posterior

* ok ok ok %k ok ok oF



Background:
Variational Inference

Data 9= (xX|2, xe (0,1} v xFe V"

Model p,(x5, 25 = py(x*| Z5p(z")

Unsupervised setting:

Observe dataset, text always BOW or Seq of Words

We’ll have a generative model of the text with latent vars per datapoint

We’d like to learn model by maximizing the marginal likelihood of the data and do posterior inference

But the marginal likelihoods are intractable integral because of some combo of NN or infinite/high dimensional latent var
Variational inference reframes inference and optimization of marginal likelihood using an approximate posterior q
However, we can rewrite the marginal for any proposal q as ...

and we know the KL with posterior is always positive

so we can drop it and optimize a lower bound using an approximate posterior

* ok ok ok %k ok ok oF



Background:
Variational Inference

Data 9= (xX|2, xe (0,1} v xFe V"

Model p,(x5, 25 = py(x*| Z5p(z")

D
Want 6% = arg max Z log py(x¥)
O =t

Po@* | x5y = pyx* | 29" 1 pyx®)

Unsupervised setting:

Observe dataset, text always BOW or Seq of Words

We’ll have a generative model of the text with latent vars per datapoint

We’d like to learn model by maximizing the marginal likelihood of the data and do posterior inference

But the marginal likelihoods are intractable integral because of some combo of NN or infinite/high dimensional latent var
Variational inference reframes inference and optimization of marginal likelihood using an approximate posterior q
However, we can rewrite the marginal for any proposal q as ...

and we know the KL with posterior is always positive

so we can drop it and optimize a lower bound using an approximate posterior

* ok ok ok %k ok ok oF



Background:
Variational Inference

Data 9= (xX|2, xe (0,1} v xFe V"

Model p,(x5, 25 = py(x*| Z5p(z")

D
Want 0* =arg meax Z 10 <—— Intractable

/

k=1
po@* | x5) = pyx* | Z)p(2h) /

Unsupervised setting:

Observe dataset, text always BOW or Seq of Words

We’ll have a generative model of the text with latent vars per datapoint

We’d like to learn model by maximizing the marginal likelihood of the data and do posterior inference

But the marginal likelihoods are intractable integral because of some combo of NN or infinite/high dimensional latent var
Variational inference reframes inference and optimization of marginal likelihood using an approximate posterior q
However, we can rewrite the marginal for any proposal q as ...

and we know the KL with posterior is always positive

so we can drop it and optimize a lower bound using an approximate posterior

* ok ok ok %k ok ok oF



Background:
Variational Inference

Data 9= (xX|2, xe (0,1} v xFe V"

Model p,(x5, 25 = py(x*| Z5p(z")

D
Want 0* =arg meax Z 10 <—— Intractable

k=1 /
Po@* | x%) = pyx¥ | 2)p(2*) /

ELBO: Inference as Optimization
log pyx*) = E,, ¢(Zk)[10gp9(xk 1291 — KL(gy(2") | | p(z") + KL(g4(z") | | pp(2* | x5))

Unsupervised setting:

Observe dataset, text always BOW or Seq of Words

We’ll have a generative model of the text with latent vars per datapoint

We’d like to learn model by maximizing the marginal likelihood of the data and do posterior inference

But the marginal likelihoods are intractable integral because of some combo of NN or infinite/high dimensional latent var
Variational inference reframes inference and optimization of marginal likelihood using an approximate posterior q
However, we can rewrite the marginal for any proposal q as ...

and we know the KL with posterior is always positive

so we can drop it and optimize a lower bound using an approximate posterior

* ok ok ok %k ok ok oF



Unsupervised setting:

Background:
Variational Inference

Data 9= (xX|2, xe (0,1} v xFe V"

Model p,(x5, 25 = py(x*| Z5p(z")

D
Want 0* =arg meax Z 10 <—— Intractable

k=1 /
PuH 1) = 159 @A)
ELBO: Inference as Optimization
log pyx*) = E,, ¢(Zk)[10gp9(xk 1291 — KL(gy(2") | | p(z") + KL(g4(z") | | pp(2* | x5))

\—

>0

Observe dataset, text always BOW or Seq of Words

We’ll have a generative model of the text with latent vars per datapoint

We’d like to learn model by maximizing the marginal likelihood of the data and do posterior inference

But the marginal likelihoods are intractable integral because of some combo of NN or infinite/high dimensional latent var
Variational inference reframes inference and optimization of marginal likelihood using an approximate posterior q

* ok ok ok %k ok ok oF

However, we can rewrite the marginal for any proposal q as ...
and we know the KL with posterior is always positive
so we can drop it and optimize a lower bound using an approximate posterior
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But first, we’ll outline VAEs because they’re involved in > 2/3 of the papers

What we’re going to see is they solve two problems:

* They show how to get low-variance unbiased gradients wrt phi
* They show how to use a “recognition network” for approximate posterior g to allow for fast inference that generalizes to new datapoints



Variational Autoencoders:
Contribution (1)

L(0. ;%) = E, o [log pyx | 2)] = KL(g,(2) | | p(@)
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[Kingma & Welling 14] [Rezende et al. 14]

Which brings us to our first two papers, published contemporaneously:

Here’s our loss function again, which we need to further approximate with monte-carlo because p_theta is expensive to evaluate (a DNN)
Note: KL is typically analytically tractable

How to optimize? gradient descent would be great (simple, autodiff very powerful framework)

We can easily get gradient wrt theta, but have problems with phi...

Which brings us to first contribution: for a normally distributed z, we can reparameterize as deterministic function of standard noise

So we can rewrite the expectation and now we can get low-variance unbiased gradients wrt phi

* ok ok ok ok F
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* Now that we can get gradients wrt phi, why not also predict these params themselves with a DNN,
* allowing for generalization across instances and fast inference at test time
* This is the variational autoencoder

Again, they solve two problems:
* They show how to get low-variance unbiased gradients wrt phi
* They show how to use a “recognition network” for approximate posterior q to allow for fast inference that generalizes to new datapoints
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With VAEs in hand, now we’ll look at their first applications to NLP

All of these papers use autoencoders with stochastic latent representations for document/sentence modeling, but each model the problem a bit differently



Generating Text from Continuous
Latent Space with VAEs

[Miao et al. 16a]
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First Miao used VAEs for learning dense representations of documents in a bag-of-words model
* )t gets better likelihoods than prior models, such as LDA
* But since its BOW, can’t actually generate any text, really just for inference

Then Bowman published a VAE for sequence reps of documents using a seq2seq model with a latent gaussian
* While they were first to do VAE for text generation

The results are largely negative — the model is not able to outperform a standard RNN lang model

Because of serious optimization issues called posterior collapse, which we’ll get into next

Their solution is to anneal the KL term, which is necessary to get the model to use z at all

* ok ok

Finally we have Guu, who also use an autoencoder, but there method is semi-parametric

* Instead of generating a sentence from scratch, they sample a “prototype” sentence from the training data and an “edit” vector, then use a seq2seq model to make
simple changes to the prototype for generation

* This yields good results

* and interestingly, the approximate posterior is essentially fixed which drives learning of the generative model posterior — basically the reverse of how we’d normally
think about it

* Also, they don’t use a normal distribution, they use a product of magnitude (uniform) and direction (vonMises) distributions to get around posterior collapse, which we’ll

discuss in the next section
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Paper, Task

Contributions

Limitations

[Miao et al. 16a]
bag-of-words
representation

First document VAE,
better likelihood than LDA

No word order information:

cannot generate
grammatical text

[Bowman et al. 16]
sentence generation

First text VAE with word
order in generation

Posterior collapse:
underfits

1.

Editing prototypes

Poor generation far from

easier than from scratch training data because of

[Guu et al. 18]
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11

They represent the docs a bit differently, but really just different flavors of this idea.
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Next we’ll dive into the super-prominent optimization issue in VAEs: posterior collapse and discuss approaches to mitigating its deleterious effects
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Most models which try to model actual word order, such as Bowman and Guu, will use an autoregressive RNN Language Model, which factorizes as...

This yields, for a single sample of z, the ELBO ...

Posterior collapse is the phenomena where the model gets trapped a bad local optimum early in training

Where the KL goes to 0 and z contains no information about x

And the generative model convergese to an autoregressive that ignores this z
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One of the first papers to successfully deal with this problem is Yang et al.
* They propose to solve it by limiting the dependency structure generative model using dilated convolutions, preventing the model from seeing too much history
* They find that while this helps and are first to get LL above RNNLM, but there is a clear tradeoff in decoder capacity and use of z

Xu and Durrett take a different tack:

* They address the problem by switching the latent var distribution to a Fisher vonMises dist, which puts mass on the unit hyper-sphere

* By doing this, the KL term no longer depends on mu and effectively becomes a tunable hyperparameter of the model, allowing for tuning the balance of contribution
between reconstruction and KL to LL of sentences

* This works quite well in practice, but now we’ve introduced another hyperparameter, kappa, that needs tuning
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Two more recent approaches approach the problem from a different perspective: changing the optimization problem

They both argue that the issue is the proposed variational parameters from the inference network are suboptimal and propose to solve it by optimizing the variational
parameters in an inner loop

Kim et al solve this by using the inference net params as initializations for traditional meanfield stochastic variational inference, then solve that optimization in an inner
loop with SGD and backprop through the entire process

* This empirically helps significantly, and they are the first to get non-zero KLs in latent gaussian and SOTA lang model perplexities without compromising the generator
* But their method is incredibly slow (10-15x slowdown)

He et al propose a much simpler modification:

* They simply optimize the inference network to convergence on an inner loop only for the first few epochs of training
* This leads to even better scores at only 3-5x slowdown
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Two more recent approaches approach the problem from a different perspective: changing the optimization problem

They both argue that the issue is the proposed variational parameters from the inference network are suboptimal and propose to solve it by optimizing the variational
parameters in an inner loop

Kim et al solve this by using the inference net params as initializations for traditional meanfield stochastic variational inference, then solve that optimization in an inner
loop with SGD and backprop through the entire process

* This empirically helps significantly, and they are the first to get non-zero KLs in latent gaussian and SOTA lang model perplexities without compromising the generator
* But their method is incredibly slow (10-15x slowdown)

He et al propose a much simpler modification:
* They simply optimize the inference network to convergence on an inner loop only for the first few epochs of training
* This leads to even better scores at only 3-5x slowdown



Posterior collapse is a massive issue for VAEs in NLP because of the strong autoregressive decoder that can easily do well in optimization w/o using the noisy latent

variables

The first two methods propose to solve it by restricting the generative family/architecture in some way, but this trades away modeling flexibility

The second two propose a more principled approach that doesn’t limit the model, but the trade off here now is that training is a bit slower.

Mitigating Posterior Collapse

Paper, Task

Contributions

Limitations

[Yang et al. 17]
sentence generation

First text VAE that
outperforms
autoregressive RNN-LM

Must restrict generative
architecture to use limited
historical context

[Xu & Durrett 18]
sentence generation

Exchange latent Gaussian
for vonMises-Fisher leads
to better performance
w/o collapse

Must treat latent variance
as hyperparameter, else
collapse comes back. Also,
comparison is unfair

[Kim et al. 18]
sentence & image
generation

Use amortized prediction
as initialization for SVI
and backprop through it all

Very slow training
(>10x vanilla VAE),
difficult to implement

[He et al. 19]
sentence & image
generation

Aggressively optimize
inference network until it
matches model posterior

Still requires an inner
optimization during early
training stages

16




Outline

e VAEs
* Continuous Variables

¢ Optimization Issues: Posterior Collapse .
[Srivastava & Sutton 17]

e Topic Modeling [Miao et al. 17]

* Discrete Variables and Semi-supervised Learning

¢ Neural CRFs

Gen CRF
* Exact Inference
* Approximate Inference :
e VAEs for Discrete Structure: Semi-Supervised Learning
NN NLP

* Viewing Attention as a Latent Variable

17

All of the previous approaches were concerned with generation using continuous latent variables.
The next topic is using VAEs for topic models.
VAEs for topic models are better than traditional close-form update approaches for two reasons:

* Neural nets can easily cope with additional context information, allowing custom flavors of topic models to be rapidly developed
* Amortized inference in topic models allows for quick inference at test time



VAEs for Topic Models

18

Srivastava and sutton provide the first successful VAE for LDA.

* They do this on the collapsed model by constructing a laplace approximation to the dirichlet prior and inferring/sampling topic distributions theta using a logistic
normal.

* The approach works, but in practice they find that optimization is brittle and must be carefully tuned to avoid collapse of the inferred thetas to either 1-hot or uniform
optima

Miao et al extend this model by constructing a potentially infinite topic model
* They do this by using the stick-breaking construction of topic proportions in theta and parameterize the construction with an RNN. The whole thing is differentiable
which is very cool

* One issue is that they must decide the number of “active” topics by have the RNN propose on extra topic on each minibatch and measuring if there’s an change in the
ELBO w/ and w/o the additional topic — they do not “infer” the number of topics for each document
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Srivastava and sutton provide the first successful VAE for LDA.

* They do this on the collapsed model by constructing a laplace approximation to the dirichlet prior and inferring/sampling topic distributions theta using a logistic
normal.

* The approach works, but in practice they find that optimization is brittle and must be carefully tuned to avoid collapse of the inferred thetas to either 1-hot or uniform
optima

Miao et al extend this model by constructing a potentially infinite topic model

* They do this by using the stick-breaking construction of topic proportions in theta and parameterize the construction with an RNN. The whole thing is differentiable
which is very cool

* One issue is that they must decide the number of “active” topics by have the RNN propose on extra topic on each minibatch and measuring if there’s an change in the
ELBO w/ and w/o the additional topic — they do not “infer” the number of topics for each document



VAEs for Topic Models

Paper, Task Contributions Limitations

Showed how to

[Srivastava & Sutton 17] successfully train Brittle — Optimization
bag-of-words reparameterized, must be carefully tuned to
representation amortized avoid posterior collapse

inference for LDA

Number of topics is not

[Miao et al. 17] Extends VAE-LDA to inferred — requires

bag-of-words predict variable number repeated evaluations of

representation of topics likelihood for stopping
criterion

19

Amortized inference for topic models is an interesting application of VAEs because they are widely used models and alleviating the need for optimization at test time
makes them much more applicable.

Further, the use of NN parameterizations allows for quick, flexible alterations of the model (such as conditioning on other context) that previously was difficult using mean
field with coordinate ascent.
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Ok, so far our latent variables have all been continuous
(the topic model papers dealt marginalized the discrete latent variables out)

Next we’ll discuss two papers that use discrete latent variables, that correspond to some classification of the input, and they can derive learning signal for the classifier
on unlabeled data using the ELBO in addition to supervised data for better performance

We’ll see that you make minor changes the variational objective to cope with observed data
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The semi-supervised VAE setup is as follows:
* Now we have additional data that’s labeled
* And our model now depends on a per-instance discrete variable

Then we can write down a pair of ELBOs, one for each situation
* This yields the final update, which has an extra cross entropy term for optimizing gq(y) on the labeled data, otherwise there’s no update for q(y) on the labeled data
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The semi-supervised VAE setup is as follows:
* Now we have additional data that’s labeled
* And our model now depends on a per-instance discrete variable
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Classification as Inference in
Semi-supervised VAEs

Paper, Task Contributions Limitations

Use semi-supervsed VAE
for learning text-
classification and
Gumbel-Softmax samples
for reduced gradient
variance over REINFORCE

Observe large trade-off in
classification and
generation performance

[Yang et al. 17]
sentence classification
& generation

. : Variational objective
Use semi-supervised VAE . J
) . yields poor performance
for learning to infer .

dialogue intentions then | model must be fine-

9 . tuned with RL on task

generate responses in .
success objective.

mplex neural .
co p.e eura Even then, only marginal
architecture .
improvement

[Wen et al. 17]
dialogue interpretation
& response generation

22

The idea of treating annotations as latent variables and doing semi-supervised with a VAE is a very interesting one
* Yang et al do this for classification, although they find there is a tradeoff in classification and generation performance — as modelers, we must decide which is more

important to us
* Wen et al do something similar by embedding classification of user “intention” as a submodule in a complex neural conversational agent.

* They however use REINFORCE and find that optimization of the variational objective alone leads to performance well below state of the art



Classification as Inference in
Semi-supervised VAEs

[Yang et al. 17]
LSTM tastes really great
Paper, TaSk encoder \A * A
. e I H"%F Decoder| | [
s
tast Il t
[Yang et al. 17] astes really grea in
sentence classification Gl
& generation e
var tastes really great EOS
dilation=2 | [ |
Us dilation=1 e
[Wen et al. 17] .
. . . di; input
dialogue interpretation ) embedding
& response generation 1
BOS tastes really great al

22

The idea of treating annotations as latent variables and doing semi-supervised with a VAE is a very interesting one

* Yang et al do this for classification, although they find there is a tradeoff in classification and generation performance — as modelers, we must decide which is more
important to us

* Wen et al do something similar by embedding classification of user “intention” as a submodule in a complex neural conversational agent.
* They however use REINFORCE and find that optimization of the variational objective alone leads to performance well below state of the art
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Now we’ll take a brief tour through applications of undirected graphical models — conditional random fields with neural factors.

Structured outputs are common in many NLP tasks, such as tagging and parsing, and CRFs represent a strong class of models for enforcing structural constraints in
these problems, while neural nets have become standard for their representational capacity. The next set of papers illustrate that these two modeling techniques are
mutually beneficial
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A prime example of neural CRF use in NLP are tagging problems, where we have specific dependencies between neighboring tags, since they follow a grammar.

Lample et al were the first to illustrate the mutual benefits of a neural sequence CRF for named entity recognition, learning language-agnostic orthographic features (what
names look like at the character level) completely from data and using a CRF layer on top to alleviate decoding errors made by independent-output neural models

More recently, Greenberg et al showed that data from multiple potentially overlapping annotation datasets (for differing tasks) exhibiting partially overlapping label sets

could be combined by optimizing the marginal likelihoods of the observed labels. This wouldn’t work in an independent model, since unobserved tags have no effect on
neighboring tag — the model could never learn to predict the O tag
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A prime example of neural CRF use in NLP are tagging problems, where we have specific dependencies between neighboring tags, since they follow a grammar.

Lample et al were the first to illustrate the mutual benefits of a neural sequence CRF for named entity recognition, learning language-agnostic orthographic features (what
names look like at the character level) completely from data and using a CRF layer on top to alleviate decoding errors made by independent-output neural models

More recently, Greenberg et al showed that data from multiple potentially overlapping annotation datasets (for differing tasks) exhibiting partially overlapping label sets

could be combined by optimizing the marginal likelihoods of the observed labels. This wouldn’t work in an independent model, since unobserved tags have no effect on
neighboring tag — the model could never learn to predict the O tag
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A similar story can be told with tree-parsing. Durrett and Klein were the first to introduce neural crf parsing and their relatively simple learned MLP features outperformed
hand-crafted features.

Years later, Kitaev and Klein showed that a dramatic increase in performance can be obtained just by switching out the encoder layer with state-of-the-art sentence
encoding architectures, illustrating that the fusion of CRFs with neural nets are essentially decoupled.
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A similar story can be told with tree-parsing. Durrett and Klein were the first to introduce neural crf parsing and their relatively simple learned MLP features outperformed
hand-crafted features.

Years later, Kitaev and Klein showed that a dramatic increase in performance can be obtained just by switching out the encoder layer with state-of-the-art sentence
encoding architectures, illustrating that the fusion of CRFs with neural nets are essentially decoupled.



Exact Neural CRFs

Paper, Task

Contributions

Limitations

[Lample et al. 16]
named entity
recognition

First to show that tagging
CRF can be combined with
powerful neural features

Tagging CRF known to be
suboptimal for
segmentation

[Greenberg et al. 18]
named entity
recognition

Combine annotations from
multiple datasets using
CRF

Requires unequal tagsets
for different datasets or it
will not learn to predict “O”

[Durrett & Klein 15]
constituency-syntax
parsing

First to use tree CRF with
neural features

Uses simplistic MLP
features

[Kitaev & Klein 18]
constituency-syntax
parsing

Same CREF, but huge
improvements using SOTA
neural text encoding
architecture

Further improvements
can be obtained with BERT
encoder pretraining
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In NLP our output is often heavily structured, and conditional random fields are a great tool for representing the dependencies among outputs,

* Further they are completely amenable to having their potentials predicted using neural networks and are end-to-end trainable thanks to the differentiability of the sum-
product algorithm
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Often we want to learn models with globally normalized structures that do not permit tractable exact inference.

These next two papers illustrate how to exploit approximate inference in neural and still learn the models end-to-end.




Handling Intractable CRFs

Z(Q, x) is often intractable for interesting joint factorizations
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Unless the CRF exhibits a factorization that allows for computation of the partition function in polynomial time with dynamic programming, we must approximate it.

Ganea and Hofmann demonstrated one way of doing this in their neural entity-linking model.

* The model incorporates pair-wise plausibility factors between all entities, allowing for a global disambiguation and learn the model by using truncated loopy belief
propagation and optimizing the approximate marginals.

* LBP is differentiable and so the model can be learned end-to-end.

* LBP however has quadratic runtime which makes this model extremely slow for documents of appreciable size.

Andor et al use a different approach to mitigate the well-known issue of label bias in locally normalized structured output models, with direct application to dependency

parsing.

* They first train the model with the local objective, but then continue training using beam-search on the unnormalized scores and approximate the partition function
using the mass on the beam

* They find that this significantly reduces label-bias.


https://www.cs.cmu.edu/~epxing/Class/10715/lectures/lecture12-CRF.pdf
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Unless the CRF exhibits a factorization that allows for computation of the partition function in polynomial time with dynamic programming, we must approximate it.

Ganea and Hofmann demonstrated one way of doing this in their neural entity-linking model.

* The model incorporates pair-wise plausibility factors between all entities, allowing for a global disambiguation and learn the model by using truncated loopy belief
propagation and optimizing the approximate marginals.

* LBP is differentiable and so the model can be learned end-to-end.
* LBP however has quadratic runtime which makes this model extremely slow for documents of appreciable size.

Andor et al use a different approach to mitigate the well-known issue of label bias in locally normalized structured output models, with direct application to dependency
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* They first train the model with the local objective, but then continue training using beam-search on the unnormalized scores and approximate the partition function
using the mass on the beam

* They find that this significantly reduces label-bias.


https://www.cs.cmu.edu/~epxing/Class/10715/lectures/lecture12-CRF.pdf

Handling Intractable CRFs

Z(Q, x) is often intractable for interesting joint factorizations

M
[Ganea & Hofmann 17]  po(ey, --- ey |x) = exp{ Z [Pole) + Z Dyle; )] }/Z(6. x)

i=1

J<i
4

{Wi(ei) bie, W lT lT

| LBP . LBP LBP
- passmg | ©*- | passing [ Fi(ei)lies 2 loss
{(I) (e5,€ 5 ) } eie;s iteration iteration iteration
4 - ! | 1} F & backward
{ml:] >J((’./) = ()}l-.I-M {m}ﬁj(()j)}i-jm, {m;l;j((’.l)}i-j«', Lt

[Andor et al. 16]

Observation 1  Observation2 Observation3  Observation 4
State 1

Observation 1 Observation 2 Observation 3  Observation 4
(M
State 2

28
Unless the CRF exhibits a factorization that allows for computation of the partition function in polynomial time with dynamic programming, we must approximate it.

Ganea and Hofmann demonstrated one way of doing this in their neural entity-linking model.

* The model incorporates pair-wise plausibility factors between all entities, allowing for a global disambiguation and learn the model by using truncated loopy belief
propagation and optimizing the approximate marginals.
* LBP is differentiable and so the model can be learned end-to-end.

* LBP however has quadratic runtime which makes this model extremely slow for documents of appreciable size.

parsing.

Andor et al use a different approach to mitigate the well-known issue of label bias in locally normalized structured output models, with direct application to dependency
using the mass on the beam

* They first train the model with the local objective, but then continue training using beam-search on the unnormalized scores and approximate the partition function
* They find that this significantly reduces label-bias.


https://www.cs.cmu.edu/~epxing/Class/10715/lectures/lecture12-CRF.pdf

Approximate Neural CRFs

Paper, Task Contributions Limitations

LBP has quadratic
[Ganea & Hofmann 17] Back.prop throug.h loopy | runtime, sev_er.ely slowing
entity linking belief-propagation to down training and
handle intractable CRF limiting size of possible
candidate set

[Andor et al. 16] Mitigate label-bias
dependency-syntax | problem using intractable | Inexact: hoping beam
parsing, CRF and beam-search to approximates partition,
part-of-speech tagging,; approximate the partition difficult to implement
sentence compression function
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Both of these papers provide alternative approaches to learning intractable neural crfs without sacrificing end-to-end training by backproping through the

approximations.
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Ok, now that we’ve discussed VAEs and Neural CRFs, we’re ready to discuss methods that for semi-supervised learning of discrete structured models.

Structured prediction is a crucial subfield of NLP as complex tasks have considerable dependencies among their outputs, while the complexity of the annotations also
makes them more costly to obtain.

What we’ll see is that we can take our conditional structured output model and embed it as inference in a generative model.

This allows for us to learn on additional unlabeled data by deriving learning signal from reconstructing the input and regularizing inference to the prior (which can be
learned)
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First, Miao and Blunsom introduced a VAE model of sentence compression and generation where the latent variables are entire discrete sequences (the compressions).

* Their semi-supervised approach first trained both the inference, generative, and prior language model on the supervised data
* They then continued training on unlabeled data, optimizing the inference model using the REINFORCE gradient estimator

* What’s interesting here is their use of a prior compression language model — this can be seen as an emprical bayesian prior

Yin et al do a very similar thing for learning to predict semantic parses from natural language by first converting the tree problem to a sequence problem by linearizing the

trees.
* They then follow Miao and Blunsom in training
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First, Miao and Blunsom introduced a VAE model of sentence compression and generation where the latent variables are entire discrete sequences (the compressions).

* Their semi-supervised approach first trained both the inference, generative, and prior language model on the supervised data
* They then continued training on unlabeled data, optimizing the inference model using the REINFORCE gradient estimator

* What'’s interesting here is their use of a prior compression language model — this can be seen as an emprical bayesian prior

Yin et al do a very similar thing for learning to predict semantic parses from natural language by first converting the tree problem to a sequence problem by linearizing the

trees.
* They then follow Miao and Blunsom in training
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The previous two papers were for locally normalized latent sequences, but these next two embed CRFs as the inference models in VAE-like objectives.

Zhang et al don’t quite formulate the problem as VAE, they instead consider a conditional model for reconstructing the input through an unobserved CRF — there is no
“prior” on the tag sequences.

* They then use an extremely simple model words given tags, which allows them to calculate the marginal probability of reconstruction given the input using the forward
algorithm.

* They do this for semi-supervised part of speech tagging and see decent improvements

More recently, Corro and Titov use the generalized perturb-and-map to get samples of dependency parse trees through the Eisner CRF algorithm by adding independent

gumbel noise to the CRF factors and relaxing the argmax to a softmax, which yields “soft” dependency trees as samples. They then embed this as the inference network
in a VAE and find that it, like Zhang, yields considerable improvements over a supervised model.
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The previous two papers were for locally normalized latent sequences, but these next two embed CRFs as the inference models in VAE-like objectives.

Zhang et al don’t quite formulate the problem as VAE, they instead consider a conditional model for reconstructing the input through an unobserved CRF — there is no
“prior” on the tag sequences.

* They then use an extremely simple model words given tags, which allows them to calculate the marginal probability of reconstruction given the input using the forward
algorithm.

* They do this for semi-supervised part of speech tagging and see decent improvements

More recently, Corro and Titov use the generalized perturb-and-map to get samples of dependency parse trees through the Eisner CRF algorithm by adding independent

gumbel noise to the CRF factors and relaxing the argmax to a softmax, which yields “soft” dependency trees as samples. They then embed this as the inference network
in a VAE and find that it, like Zhang, yields considerable improvements over a supervised model.



The first two papers show how to train VAEs for semi-supervised learning with locally normalized inference distributions, while the second two show how to embed CRFs

as latent variables and learn end-to-end

Semi-Supervised Learning for
Structured Prediction

Paper, Task Contributions Limitations
[Miao & Blunsom 16b] Embed seqg2seq model in Use of REINFORCE to
sentence VAE and learn yields limited
(de)compression compression as latent improvement from
P variable sequence unsupervised data
[Yin et al. 18] Semi-supervised VAE Requires linearization of the
program semantic training for semantic tree, which ignores some of
parsing parsing the problem structure

[Zhang et al. 17]
part of speech tagging

Embed sequence CRF as
inference network with
simple generative model for
tractable EM training

Generative model must be
restricted to make
objective tractable

[Corro & Titov 19]
dependency-syntax
parsing

Semi-supervised training
of tree parsing, relaxed
perturb-and-map samples
through dynamic program

Requires architecture that
can cope with “soft”
dependency trees
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| think semi-supervised learning with structured latent variables is an exciting direction in the field.
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Ok, finally we’ll discuss the intersection of attention mechanisms, which have become a workhorse mechanism in NLP and their interpretation as latent variables.

What we’ll find is that attention and discrete latent variables have a lot in common — they both predict discrete distributions over sets of objects — and so we can use
what we know about graphical models to enhance attention
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Kim et al extend the typical categorical attention mechanism to use marginal probabilities of structured distributions as the attention scores.
* This allows for neighboring attentions to be correlated, or, when using depency syntax CRF (not shown), for word representations to be influenced by their most likely
syntactic dependency parents in the sentence
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Kim et al extend the typical categorical attention mechanism to use marginal probabilities of structured distributions as the attention scores.
* This allows for neighboring attentions to be correlated, or, when using depency syntax CRF (not shown), for word representations to be influenced by their most likely
syntactic dependency parents in the sentence
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Kim et al extend the typical categorical attention mechanism to use marginal probabilities of structured distributions as the attention scores.
* This allows for neighboring attentions to be correlated, or, when using depency syntax CRF (not shown), for word representations to be influenced by their most likely
syntactic dependency parents in the sentence
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Kim et al extend the typical categorical attention mechanism to use marginal probabilities of structured distributions as the attention scores.
* This allows for neighboring attentions to be correlated, or, when using depency syntax CRF (not shown), for word representations to be influenced by their most likely
syntactic dependency parents in the sentence
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Kim et al extend the typical categorical attention mechanism to use marginal probabilities of structured distributions as the attention scores.
* This allows for neighboring attentions to be correlated, or, when using depency syntax CRF (not shown), for word representations to be influenced by their most likely
syntactic dependency parents in the sentence
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Similarly, Strubell et al, which was the best paper at the most recent EMNLP.
* Like Kim’s tree-based attention, they identified a correspondence between self-attention and dependency-syntax.
* They then directly supervised one of the attention heads in a transformer architecture to attend to syntactic parents, which provided huge improvements in

representation learning for semantic role-labeling.
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Similarly, Strubell et al, which was the best paper at the most recent EMNLP.
* Like Kim’s tree-based attention, they identified a correspondence between self-attention and dependency-syntax.
* They then directly supervised one of the attention heads in a transformer architecture to attend to syntactic parents, which provided huge improvements in

representation learning for semantic role-labeling.
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Lei al embedding a stochastic binary attention as a bottleneck in document aspect classification which forced the model to focus on important signal only, but they don’t
treat it as a formal latent variable in VAE sense
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Le and Titov extend the approximate CRF entity linking model of Ganea and Hofmann

by encoding potential relations between entity mentions as latent variables in the model.

* Instead of giving all pairs equal weight, this mechanism effectively weighs certain pairs more highly to favor the influence of pairs which are likely related in the text to
the final disambiguation score



A Latent View of Attention

[Ganea & Hofmann 17]

A
‘ LBF L8P
. +| messa message | .
[Le & Titov 18] - s ?
>
England England West_Germany
England national_ England national Germany national_
FIFA World Cup football_team football_team football_team
FIBA Basketball England_national England_national Germany national
World Cup basketball_team _basketball_team basketball_team
World Cup 1966 was held in England .... England won... The final saw England beat West Germany .

located.

participant_in

38

Le and Titov extend the approximate CRF entity linking model of Ganea and Hofmann

by encoding potential relations between entity mentions as latent variables in the model.

* Instead of giving all pairs equal weight, this mechanism effectively weighs certain pairs more highly to favor the influence of pairs which are likely related in the text to
the final disambiguation score



A Latent View of Attention

[Ganea & Hofmann 17]

[Le & Titov 18]

England England West_Germany
England_national _ England_national Germany_national_
FIFA World Cup football_team football_team football_team
FIBA Basketball England_national_ England_national Germany_national_
World Cup basketball_team _basketball_team basketball_team
t t T t
World Cup 1966 was held in England .... England won... The final saw England beat West Germany .

located.

participant_in

M
Poers ... ey x) = exp{ Z [®y(e) + Z Dyle, e)] /26, x)

i=1 j<i

38

Le and Titov extend the approximate CRF entity linking model of Ganea and Hofmann

by encoding potential relations between entity mentions as latent variables in the model.

* Instead of giving all pairs equal weight, this mechanism effectively weighs certain pairs more highly to favor the influence of pairs which are likely related in the text to
the final disambiguation score



A Latent View of Attention

[Ganea & Hofmann 17]

[Le & Titov 18]

England England West_Germany
England_national _ England_national Germany_national_
FIFA World Cup football_team football_team football_team
FIBA Basketball England_national_ England_national Germany_national_
World Cup basketball_team _basketball_team basketball_team
t t T t
World Cup 1966 was held in England .... England won... The final saw England beat West Germany .

located.

participant_in

M
Poers ... ey x) = exp{ Z [®y(e) + Z Dyle, e)] /26, x)

i=1 j<i

K
Dyle ¢) = z alj,‘kq)]é(ei, e;)
k=1

38

Le and Titov extend the approximate CRF entity linking model of Ganea and Hofmann

by encoding potential relations between entity mentions as latent variables in the model.

* Instead of giving all pairs equal weight, this mechanism effectively weighs certain pairs more highly to favor the influence of pairs which are likely related in the text to
the final disambiguation score



A Latent View of Attention

[Ganea & Hofmann 17]

[Le & Titov 18]

England England West_Germany
England_national _ England_national Germany_national_
FIFA World Cup football_team football_team football team
FIBA Basketball England_national_ England_national Germany_national_
World Cup basketball_team _basketball_team basketball_team
t t T t
World Cup 1966 was held in England .... England won... The final saw England beat West Germany .

located.

participant_in

(ment-norm)

M e1,m1,c1

Poers ... ey x) = exp{ Z [®y(e) + Z Dyle, e)] /26, x)
i=1 J<i €,m,C O €;m;.C

.

k ,m,
Dyle;, ej) = Z alj,‘kq)g(ei’ ej) ) o MGy
normalize over mentions:
k:l ai12+ui22+""“aij2+"""ain2=’1
38

Le and Titov extend the approximate CRF entity linking model of Ganea and Hofmann

by encoding potential relations between entity mentions as latent variables in the model.

* Instead of giving all pairs equal weight, this mechanism effectively weighs certain pairs more highly to favor the influence of pairs which are likely related in the text to
the final disambiguation score
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Lastly, Deng et al model attention in machine translation formally as a latent variable in a VAE.

Viewing attention this way allows them to use an inference network that could consider the entire output when providing attention samples, in particular it can look at the
word to be generated when computing attention.

* This provides more signal to the model samples and the KL term in the vae drives the forward attention towards this approximate posterior attention

* An interesting byproduct of this approach is that they also get a posterior inference model which can take a translation pair and infer alignments between them.
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Lastly, Deng et al model attention in machine translation formally as a latent variable in a VAE.

Viewing attention this way allows them to use an inference network that could consider the entire output when providing attention samples, in particular it can look at the
word to be generated when computing attention.

* This provides more signal to the model samples and the KL term in the vae drives the forward attention towards this approximate posterior attention

* An interesting byproduct of this approach is that they also get a posterior inference model which can take a translation pair and infer alignments between them.
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These mechanisms also have much in common with graphical models — they induce unsupervised distributions over sets of objects. This is important because attention
mechanisms have become a mainstay in neural architectures for NLP, in part because they improve performance, in part because they provide some level of
interpretability.
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[Lei et al. 16]
document aspect
classification
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as bottleneck for
classification

Requires many rational
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convergence

[Le & Titov 18]
entity linking
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between entities in joint
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[Deng et al. 18]
machine translation

Attention as approximate
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extra output during training

Difficult to optimize the
model successfully
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These papers illustrate that attention mechanisms can benefit greatly from latent-variable approaches, whether it by structured inference, cross-entropy supervision,

stochasticity, reweighing the scoring factors, or using posterior inference to improve forward attention.
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42

To wrap up, | hope I've convinced you that deep learning, generative models, and structured models all have a lot to offer each other in the field of NLP.

| particularly think the semi-supervised learning for neural structured outputs is an exciting direction for the field!



Thanks!

Questions?
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Mitigating Posterior Collapse
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One of the first papers to successfully deal with this problem is Yang et al.
* They propose to solve it by limiting the dependency structure generative model using dilated convolutions, preventing the model from seeing too much history
* They find that while this helps and are first to get LL above RNNLM, but there is a clear tradeoff in decoder capacity and use of z

Xu and Durrett take a different tack:

* They address the problem by switching the latent var distribution to a Fisher vonMises dist, which puts mass on the unit hyper-sphere

* By doing this, the KL term no longer depends on mu and effectively becomes a tunable hyperparameter of the model, allowing for tuning the balance of contribution
between reconstruction and KL to LL of sentences

* This works quite well in practice, but now we’ve introduced another hyperparameter, kappa, that needs tuning
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Lagging Inference Networks

Algorithm 1 VAE training with controlled aggressive inference
network optimization.

1: 0, ¢ « Initialize parameters

2: aggressive < TRUE

3: repeat
4 if aggressive then
5: repeat > [aggressive updates]
6: X < Random data minibatch
7 Compute gradients g¢ < V4L(X; 6, @)
8: Update ¢ using gradients g
9: until convergence
10: X < Random data minibatch
11: Compute gradients gg < Vo L(X; 0, ¢)
12: Update 0 using gradients gg
13: else > [basic VAE training]
14: X ¢ Random data minibatch
15: Compute gradients gg ¢ < V.0L(X; 6, @)
16: Update 0, ¢ using go,¢
17: end if
18: Update aggressive as discussed in Section 4.2

19: until convergence

Iq = Exnpy(x) [ Dxr (90 (2%)||p(2))] — Dkr(4e(2)(p(2)),

47




Topic Models

48

A quick recap of standard LDA topic models.

We’re given a hyperparameter alpha that governs topic sparsity and a set K of topic word distributions as parameters
* Then for each document, we draw its topic distribution (a simplex vector) from a dirichlet prior

* Then for each word in the doc, we draw a discrete topic choice z_n

* Then we draw a word from the topic selected by z_n

The marginal probability of the data is given below. Note that we can marginalize out the discrete topic choices easily, yielding what’s called the “collapsed” model. Now
we only need to do inference on the topic proportions theta.
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Autoencoding Variational
Inference For Topic Models

Dirichlet Laplace Approximation

L(®) = i [ (%{tr(Eflﬂo) + (11— o) 21 (1 — o) — K + log %})
+Een(0,1) lw,}r log (0(,3)0(#0 + 2(1)/26))” :
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Autoencoding Variational
Inference For Topic Models

[ ProdLDA [ LDA | LDA LDA

#topics | * yAE | VAE | DMFVI | Collapsed Gibbs | NVPM
50 024 | 0.1 | 0.1 0.7 0.08
200 0.9 [ 0.11 | 006 0.14 0.06

Table 1: Average topic coherence on the 20 Newsgroups dataset. Higher is better.

T ProdLDA | LDA | LDA LDA

#topics | * yAE | VAE | DMFVI | Collapsed Gibbs | NYPM
50 014 [ 007 : 0.04 0.07
200 012 | 0.0 - 0.06 0.05

Table 2: Average topic coherence on the RCV1 dataset. Higher is better. Results not reported for

LDA DMFVI, as inference failed to converge in 24 hours.

[ ProdLDA [ LDA | LDA LDA

#topics | " yAE | VAE | DMFVI | Collapsed Gibbs | NYPM
50 172 | 1059 | 1046 728 837
200 168 | 1128 | 1195 688 834

Table 3: Perplexity scores for 20 Newsgroups. Lower is better.
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Discovering Discrete Latent Topics
with Neural Variational Inference

Algorithm 1 Unbounded Recurrent Neural Topic Model

0: Initialise © and ®; Set active topic number ¢

1: repeat N
2:  for s € minibatches S do i [ i gt } _
3 for k € [1,4] do Ly~ |logp(walf',6%)| — Dk a(eld)llp()]
4 Compute topic vector t; = RNNropic (t5—1)
5: Compute topic distribution ), = softmax(v - t7 )
6: end for
7: ford € D, do R
8: Sample topic proportion 8 ~ Grsg(8|u(d), o*(d)) D D
9: for w € document d do ) T = Z [Ez _Ei—l] /Z [Ez]
10: Compute log-likelihood log p(w|d, 8) d d d g d
11: end for ] ,
12: Compute lowerbound Lfi_l and L
13: Compute gradients V@@LZ and update
14: end for
15: Compute likelihood increase Z
16: if Z > v then
17: Increase active topic number ¢ = ¢ + 1
18: end if
19:  end for

20: until Convergence
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Discovering Discrete Latent Topics
with Neural Variational Inference

Finite Topic Model MXM  20News RCVI Finite Document Model MXM _ 20News RCVI
50 200 50 200 50 200 50 200 50 200 50 200

GSM 306 272 822 830 717 602 GSM 270 267 787 829 653 521
GSB 309 296 838 826 788 634 GSB 285275 816 815712 544
RSB 311 297 835 822 750 628 RSB 286 283 785 792 662 534
OnlineLDA 312 342 893 1015 1062 1058 NVDM 345 345 837 873 717 588

(Hoffman et al., 2010) (Miao et al., 2016)
NVLDA 330 357 1073 993 791 797 ProdLDA 319 326 1009 989 780 788

(Srivastava & Sutton, 2016) (Srivastava & Sutton, 2016)

Unbounded Topic Model MXM 20News RCV1 Unbounded Document Model MXM 20News RCV1
RSB-TF 303 825 622 RSB-TF 285 788 532
HDP (Wang et al., 2011) 370 937 918
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Classification as Inference in
Semi-supervised VAEs

[Yang et al. 17]
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We can visualize this in a VAE architecture by looking back at Yang et al 17 — they also evaluate their dilated CNN decoder on semi-supervised classification

Here now our q(z) depends on y, which may be fixed or sampled.

The challenge here is gradients with respect to phi through y in the unsupervised case:
* We cannot naively use the reparameterization trick on discrete variables

If y is sufficiently small we can marginalize it out

but if marginalizing isn’t reasonable, how can we get gradients wrt samples?

*
*

* but Yang et al use a recent development called the Gumbel-Softmax distribution, which reparameterizes a categorical sample using the gumbel-argmax trick, then

relaxes the argmax to a softmax, allowing for gradients w.r.t phi through q(y) — pretty neat!
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*

Yang et al use a recent development called the Gumbel-Softmax distribution, which reparameterizes a categorical sample using the gumbel-argmax trick, then
relaxes the argmax to a softmax, allowing for gradients w.r.t phi through q(y) — pretty neat!
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*

Yang et al use a recent development called the Gumbel-Softmax distribution, which reparameterizes a categorical sample using the gumbel-argmax trick, then
relaxes the argmax to a softmax, allowing for gradients w.r.t phi through q(y) — pretty neat!



Loopy Belief Propagation

Sum-Product Belief Propagation

. — (D — be(x¢) o H Me—ss(xs)
\TT s€neighbors( )

ms—)t(xt) = Z <¢St(XSvXt) H mu—)s(xs)>
(s)\t

Xs u€Eneighbors

mg_,p(xp) = Z¢(XB,XC) X ma—g(x8) X mc_p(xB)

Credit: Bert-Huang https://www.youtube.com/watch?v=meBWAboEWQk
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https://www.youtube.com/watch?v=meBWAboEWQk

Globally Normalized Transition
Based Neural Networks

Given an input =, most often a sentence, we define: Globally Normalized, Early Updates
e A set of states S(z).
e A special start state s € S(z).
o A set of allowed decisions A(s, z) forall s € J J

S(z). - Zp(d’{:i—la d;;0) +1In Z exp Z p(dii—1,d;;6).

s / 1=
=1 dl:jij =1

Lglobal—beam (dik:j; 9) -

e A transition function ¢(s,d,z) returning a
new state s’ for any decision d € A(s, z).

pl5,d;0) = 9(5;0) - 0@

Local Normalization
exp p(di;j-1,d;;0)

dildy.;_1;0) = , (1

p(d;ld1j-1;0) Zr(dy:j-1;0) M
where

Z1(d1:j-1;0) = Z exp p(dlzj_l,d';Q).

dIE.A(dl;jfl)
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Globally Normalized Transition
Based Neural Networks

En En-Union CoNLL ’09 Avg
Method WSJ News Web QTB Ca Ch Cz En Ge Ja Sp -
Linear CRF 97.17 97.60 94.58 96.04 98.81 94.45 98.90 97.50 97.14 97.90 98.79 97.17
Ling et al. (2015) 97.78 97.44 94.03 96.18 98.77 9438 99.00 97.60 97.84 97.06 98.71 97.16
Our Local (B=1) 97.44 97.66 94.46 96.59 9891 94.56 98.96 97.36 97.35 98.02 98.88 97.29
Our Local (B=8) 97.45 97.69 94.46 96.64 98.88 94.56 98.96 97.40 97.35 98.02 98.89 97.30
Our Global (B=8) 97.44 97.77 94.80 96.86 99.03 94.72 99.02 97.65 97.52 98.37 98.97 97.47
Parsey McParseface - 97.52 9424 9645 - - - - - - - - -

Table 1: Final POS tagging test set results on English WSJ and Treebank Union as well as CONLL’09. We also show the

performance of our pre-trained open source model. ‘“Parsey McParseface.”

WSJ Union-News Union-Web Union-QTB
Method UAS LAS UAS LAS UAS LAS UAS LAS
Martins et al. (2013)* 92.89 90.55 93.10 91.13 88.23 85.04 9421 9154
Zhang and McDonald (2014)* 93.22 91.02 93.32 91.48 88.65 85.59 93.37  90.69
Weiss et al. (2015) 93.99 92.05 9391 92.25 89.29 86.44 94.17 92.06
Alberti et al. (2015) 94.23 92.36 94.10 92.55 89.55 86.85 94.74  93.04
Our Local (B=1) 92.95 91.02 93.11 9146 8842 8558 92.49 90.38
Our Local (B=32) 93.59 91.70 93.65 92.03 88.96 86.17 9322 91.17
Our Global (B=32) 94.61 92.79 94.44 9293  90.17 87.54 95.40 93.64
Parsey McParseface (B=8) - - 94.15 92.51 89.08 86.29 94.77 93.17

Table 2: Final English dependency parsing test set results. We note that training our system using only the WSJ corpus (i.e. no
pre-trained embeddings or other external resources) yields 94.08% UAS and 92.15% LAS for our global model with beam 32.
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Globally Normalized Transition
Based Neural Networks

Generated corpus Human eval

Method A F1 read info
Filippova et al. (2015) 35.36 82.83 466 4.03
Automatic - - 431 3.77
Our Local (B=1) 30.51 78.72 458 4.03
Our Local (B=8) 31.19 75.69

Our Global (B=8) 3516 8141  4.67 4.07
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Label Bias Problem

In proving P ¢ Pr, we will use a simple prob-
lem where every example seen in training or test
data is one of the following two tagged sentences:

r1X2x3 = ab C, d1d2d3 =ABC
T1X2x3 = ab c, d1d2d3 =ADE (7)

Note that the input o = b is ambiguous: it can
take tags B or D. This ambiguity is resolved when
the next input symbol, c or e, is observed.

pr(ABClabc) +prL(ADE|abe) <1

pa(ABClabc)+pg(ADE|abe) > 1
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Label Bias Problem

corpus:
Harvey Ford

(person 9 times, location 1 time) b-person
Harvey Park

(location 9 times, person 1 time)

Myrtle Ford

(person 9 times, location 1 time) other
Myrtle Park

(location 9 times, person 1 time)

b-locn
second token a good indicator

of person vs. location

—

e

e-person

e-locn

Credit: https://cs.nyu.edu/courses/spring 1 7/CSCI-GA .2590-001/LabelBias.pdf

60



https://cs.nyu.edu/courses/spring17/CSCI-GA.2590-001/LabelBias.pdf

Label Bias Problem

Conditional probabilities:
b-person >  e-person
p(b-person | other, w = Harvey) = 0.5 /
p(b-locn | other, w = Harvey) = 0.5
p(b-person | other, w = Myrtle) = 0.5
p(b-locn | other, w = Myrtle) = 0.5 other
p(e-person | b-person, w = Ford) = 1
p(e-person | b-person, w =Park) =1
p(e-locn | b-locn, w = Ford) = 1 \
p(e-locn | b-locn, w = Park) = 1 b-locn — e-locn
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https://cs.nyu.edu/courses/spring17/CSCI-GA.2590-001/LabelBias.pdf

Path, Score Gradients and
Control Variates

PD : Vg, .0lf(2)] = Eye[Vaf(g(e, )]
SF : Vo) f(@)] = Epzo) [f () Vg log p(z; 0)]

Variance Reduction: Control Variates

VoE 0 f (2)] = Epo[(f(z) — 1)V log p(z; 0)]
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Language as Latent Variable

Model Training Data Recall Precision F-1
Labelled Unlabelled R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
FSC 500K - 30.817 10.861 28.263 | 22.357 7.998 20.520 | 23.415 8.156 21.468
ASC+FSC, 500K 500K 29.117 10.643 26.811 | 28.558 10.575 26.344 | 26.987 9.741 24.874
ASC+FSC, 500K 3.8M 28.236 10359 26.218 | 30.112 11.131 27.896 | 27.453 9.902 25.452
FSC M - 30.889 11.645 28.257 | 27.169 10.266 24.916 | 26.984 10.028 24.711
ASC+FSC, M M 30490 11.443 28.097 | 28.109 10.799 25.943 | 27.258 10.189 25.148
ASC+FSC, M 3.8M 29.034 10.780 26.801 | 31.037 11.521 28.658 | 28.336 10.313 26.145
FSC 3.8M - 30.112 12436 27.889 | 34.135 13.813 31.704 | 30.225 12.258 28.035
ASC+FSC, 3.8M 3.8M 29.946 12.558 27.805 | 35.538 14.699 32.972 | 30.568 12.553 28.366

Table 1: Extractive Summarisation Performance. (1) The extractive summaries of these models are decoded
by the pointer network (i.e the shared component of the ASC and FSC models). (2) R-1, R-2 and R-L
represent the Rouge-1, Rouge-2 and Rouge-L score respectively.

Model Training Data Recall Precision F-1
Labelled Unlabelled R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
FSC 500K - 27.147 10.039 25.197 | 33.781 13.019 31.288 | 29.074 10.842 26.955
ASC+FSC, 500K 500K 27.067 10717 25.239 | 33.893 13.678 31.585 | 29.027 11.461 27.072
ASC+FSC, 500K 3.8M 27.662 11.102 25.703 | 35756 14.537 33.212 | 30.140 12.051 27.99
FSC M - 28.521 11.308 26.478 | 33.132 13.422 30.741 | 29.580 11.807 27.439
ASC+FSC, M M 28.333 11.814 26.367 | 35.860 15.243 33.306 | 30.569 12.743 28.431
ASC+FSC, M 3.8M 29.017 12.007 27.067 | 36.128 14.988 33.626 | 31.089 12.785 28.967
FSC 3.8M - 31.148 13.553 28.954 | 36917 16.127 34.405 | 32.327 14.000 30.087
ASC+FSC; 3.8M 3.8M 32385 15.155 30.246 | 39.224 18.382 36.662 | 34.156 15.935 31915

Table 2: Abstractive Summarisation Performance. The abstractive summaries of these models are decoded by
the combined pointer network (i.e. the shared pointer network together with the softmax output layer over the
full vocabulary).
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Semi-Supervised Structured Prediction

with Neural CRF Autoencoder

Algorithm 2 Mixed Expectation-Maximization

PoA(Z,y|lx) = Pe(Z|y)Pa(y|x)

(0]
) e
[1 PGy
t
> st(z,y)

et

Z )

Po,a(Z|z) =

(]

N e

where U = ) eXt: (@)

Yy

st(x,y) = log P(xt|y:) + ¢(x, ye) + ¥ (ye—1, Y1)

loss; = —log Pg A (&,

= _(Z St(wa y)

(z,y)
Z

P(&,y|x)

ylz)
—log 2)

1:

Initialize expected count table 7, using la-
beled data {x,y}! and use it as ©© in the
decoder.

: Initialize A(%) in the encoder randomly.
: for ¢ in epochs do

Train the encoder on labeled data {x, y}!
and unlabeled data {x}* to update A¢~1 to
A®.

Re-initialize expected count table 7, with
Os.

Use labeled data {x, y} to calculate real
counts and update 7.

Use unlabeled data {z}" to compute the
expected counts with parameters A® and
©=1) and update 7.

Obtain ©®) globally and analytically
based on 7.

: end for

loss, = —log Pe A(Z|x)

= —(logU —log 7).
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Semi-Supervised Structured Prediction
with Neural CRF Autoencoder

English | French | German | Italian | Russian | Spanish | Indonesian | Croatian
Tokens 254830 | 391107 | 293088 | 272913 | 99389 | 423346 121923 139023
Training 12543 | 14554 | 14118 | 12837 4029 14187 4477 5792
Development| 2002 1596 799 489 502 1552 559 200
Testing 2077 298 977 489 499 274 297 297
Models English | French | German | Italian | Russian | Spanish | Indonesian | Croatian
HMM 86.28% | 91.23% | 85.59% | 92.03% | 79.82% | 91.31% 89.40% 86.98%
CRF 89.96% | 93.40% | 86.83% | 94.07% | 83.38% | 91.47% 88.63% 86.90%
LSTM 90.50% | 94.16% | 88.40% | 94.96% | 84.87% | 93.17% 89.42% 88.95%
NCRF 91.52% | 95.07% | 90.27% | 96.20% | 93.37% | 93.34% 92.32% 93.85%

NCRF-AE | 92.50% | 95.28% | 90.50% | 96.64% | 93.60% | 93.86% | 93.96% 94.32%

Table 2: Supervised learning accuracy of POS tagging on 8 UD languages using different models

Models English | French | German | Italian | Russian | Spanish | Indonesian | Croatian
NCRF o,y | 88.01% | 93.38% | 90.43% | 91.75% | 86.63% | 91.22% 88.35% 86.11%
NCRF-AE | 88.41% | 93.69% | 90.75% | 92.17% | 87.82% | 91.70% 89.06% 87.92%

©L)
HMM-EM | 79.92% | 88.15% | 77.01% | 84.57% | 72.96% | 86.77% 83.61% 77.20%
NCRF-AE | 86.79% | 92.83% | 89.78% | 90.68% | 86.39% | 91.30% 88.86% 86.55%

(HEM)

NCRF-AE | 89.43% | 93.89% | 90.99% | 92.85% | 88.93% | 9217% | 89.41% | 89.14%

Table 3: Semi-supervised learning accuracy of POS tagging on 8 UD languages. HEM means hard-EM,
used as a self-training approach, and OL means only 20% of the labeled data is used and no unlabeled

data is used.




Differentiable

Perturb-and-Parse

(a) Probabilistic model

¢

LSTM + GCN

(b) Computation Graph

(c) Decoder
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Differentiable
Perturb-and-Parse

W = EMBPARAMS(S)
P ~ G(0,1)
T = EISNER(W + P)

Algorithm 1 This function search the best
split point for constructing an element given
its span. b is a one-hot vector such that
b;—r = 1iff k is the best split position.

1: function DEDUCE-URIGHT(%, j, W)

2: s < null-initialized vec. of size j —1
3: fori: <k <jdo
4. Si_k [7, N k]
+ [k +147]
+ Wi
5: b < ONE-HOT-ARGMAX(S)

o

BACKPTR[i D j] b
7. WEIGHT[i D j] < b's

Eq, (T|s) [log po(s|T)] =~ log po(s|EISNER(W + P))

Algorithm 2 If item [¢ v j] has contributed
the optimal objective, this function sets T ;
to 1. Then, it propagates the contribution in-
formation to its antecedents.

1: function BACKTRACK-URIGHT(Z, j,T)
2: T;,j < CONTRIB[; D) j]
b < BACKPTR[ D j]
fori <k<jdo
CONTRIB[i N\ k] & bi—T; ;
CONTRIB[k + 1 4 j] & bi—T; ;

SANES A
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Differentiable

(a) Parsing results
English French Swedish
Supervised 88.79/84.74 84.09/77.58 86.59/78.95
VAE w. z 89.39/85.44 84.43/77.89 86.92/80.01
VAE wlo z 89.50/85.48 84.69/78.49 86.97/79.80
Kipperwasser & Goldberg | 89.88/86.49 84.30/77.83 | 86.93/80.12
(b) Dependency length analysis (c) Dependency label analysis
. Supervised Semi-sup. Supervised Semi-sup.

Distance Re/Pr Re/Pr Label Re /Pr Re/Pr

(toroot) | 93.46/89.30 | 93.84/92.41 mwe 75.58/81.25 | 90.70/84.78

1 95.61/94.07 | 95.33/94.57 advmod | 87.27/85.95 | 87.32/87.51

2 93.01/90.88 | 92.50/92.09 appos 77.49/80.27 | 81.39/81.03

3...6 85.95/88.13 | 87.31/87.93

>T7 72.47/83.26 | 78.72/83.11




A Latent View of Attention

[Kim et al. 17]
:
plzy=10)= ;:Xp{vq Wh) z=1)= exp{vTWh +loga; y; +1logfiy )
Zexp{vTWh } pra=== > exp{ll/] vTWh +loga;_; ;+log By}

J=1 Jj€{0.1}

O, O O

@ OO
@@@C @@@ @@@

p(z;=1) = o(v, Wh, +b)

69

Le and Titov extend the approximate CRF entity linking model of Ganea and Hofmann by including a “relational” attention mechanism between pairs of entities.
* Instead of giving all pairs equal weight, this mechanism effectively weighs certain pairs more highly to favor the influence of pairs which are likely related in the text to
the final disambiguation score

Kim et al extend the typical categorical attention mechanism to use marginal probabilities of structured distributions as the attention scores.
* This allows for neighboring attentions to be correlated, or, when using depency syntax CRF marginals, for word representations to be influenced by their most likely

syntactic dependency parents in the sentence



(11) Latent Intention Dialogue
Models

[Wen et al. 17]

xew y ~ Catq/(7) £ ~ Caty(-)

’\/\>7l' -»>
+f LsT™s, % ,\/\> I
Custom,
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