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ABSTRACT

In order to fulfill the potential of fingerprint templates as the basis for authentication schemes, one needs
to design a hash function for fingerprints that achieves acceptable matching accuracy and simultaneously has
provable security guarantees, especially for parameter regimes that are needed to match fingerprints in practice.
While existing matching algorithms can achieve impressive matching accuracy, they have no security guarantees.
On the other hand, provable secure hash functions have bad matching accuracy and/or do not guarantee security
when parameters are set to practical values.

In this work, we present a secure hash function that has the best known tradeoff between security guarantees
and matching accuracy. At a high level, our hash function is simple: we apply an off-the shelf hash function
on certain collections of minutia points (in particular, triplets of minutia “triangles”). However, to realize the
potential of this scheme, we have to overcome certain theoretical and practical hurdles. In addition to the
novel idea of combining clustering ideas from matching algorithms with ideas from the provable security of hash
functions, we also apply an intermediate translation-invariant but rotation-variant map to the minutia points
before applying the hash function. This latter idea helps improve the tradeoff between matching accuracy and
matching efficiency.
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1. INTRODUCTION

Biometrics in general, and fingerprints in particular, have the potential to replace text-based passwords as the
primary mode of authentication. Text based passwords are prevalent because (i) there exist secure hash functions
for strings that are computationally hard to invert and (ii) matching of hashes can be done efficiently since the
hash values are themselves strings. For fingerprints, there has been work on both axes of security1–4 and of
matching.5 However, to date, there is no work on hashes on fingerprints that has both provable security and
practical matching accuracy. Following our recent work,6,7 we continue the search for hashes on fingerprints that
have a better tradeoff between provable security and achievable practical matching accuracy.

Existing work on provably secure hash functions treats the fingerprint as sets. This is the minimum require-
ment for a hash function to work on fingerprints; due to the way scanners read fingerprints, it is impossible to
represent the fingerprint as a vector. Such a hash function h works as follows: Given two fingerprints f1 and
f2 (as sets), the fingerprint f2 is matched to f1 if |f1 ∩ f2| is sufficiently large. In other words, two fingerprints
are matched if they have a large set intersection. Further, these schemes would work for any sets irrespective
of whether or not they came from fingerprints. As a specific example, consider the following two cases where
we have |f1 ∩ f2| = 3. In one case the three common points are immediately adjacent, while in the other case
the three points are far apart. These two situations are different (in the former case, intuitively, the match is
much stronger), but existing secure hash functions treat both cases as the same. This results in poor matching
accuracy. Another issue with most such secure hash functions is that, even though these schemes have provable
security, the security only works at parameter regimes that are not useful in practice.6

On the other hand, existing matching algorithms heavily utilize the geometry of the fingerprint. So for
example, in the above scenario, matching algorithms will give more “weight” to the case when matched points
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are close to each other. Unfortunately, these matching algorithms need the fingerprints to be stored in the clear,
which implies absence of any security. This leads to the following motivating question for our work:

Is it possible to design secure hash functions that exploit the geometry of fingerprints for better match-
ing accuracy as well as have provable security for parameter regimes that are needed in practice?

In this work, we present our scheme (which we would like to stress is a work in progress) that improves upon
previous attempts to address this question. In particular, our scheme uses ideas from matching algorithms along
with ideas for secure hashes on strings. In a nutshell, here is how our scheme works. Given a set of n minutia
points, for each point, we consider the two closest points to form a total of n triplets. Then, we convert the
length of the sides of the corresponding triangle (as well as some angular information) into a fixed length string
in a deterministic way (let us call this the canonical string of the triangle). During the matching phase, we build
n triplets as above for the candidate fingerprint and construct the canonical string for each of these triangles.
Finally, we try to match the hashes of as many canonical strings as possible with the existing hash values. In
hindsight perhaps our scheme looks very simple, since we use the idea of matching triplets (which is common
in existing matching algorithms8–10) and simply apply an off-the-shelf string hash function on such triangles.
However, to make this idea work we need to address issues both in security and matching.

Any matching algorithm has to deal with the fact that the candidate fingerprint (even if it is a match for the
enrolled fingerprint) can be rotated and translated differently from the enrolled fingerprint. There are three ways
to deal with this issue. The first is to add extra alignment information to the enrolled fingerprint to assist in the
matching process later on. However, we cannot store this information in the clear since this extra information
will reduce the security of the scheme (and it is much harder to quantify this loss in security). In earlier work,6

we used this extra information when we tried to match fingerprints using the fuzzy vault hash.11 In particular,
this extra information was used to get an estimate on the limit of the best possible matching numbers, though
we ignored the security leakage from using this extra information. To complement the existing result, in this
paper we ran experiments on the fuzzy vault scheme without the extra alignment information.

The second option is to first use a translation- and rotation-invariant hash on the minutia points, and then
use an existing, provably-secure hash function such as fuzzy vault11 or Pinsketch12 on the intermediate set of
points. (Both of these schemes do not handle translation and rotation on their own). In our previous work,7 we
used fuzzy vault on top of a translation- and rotation-invariant map based on paths of minutia points. However,
the matching numbers for these schemes are inferior to the results in this paper. Informally, the reason for
inferior matching numbers is that these hashes lose a lot of the global information about the fingerprints. In
particular, this map does not distinguish between the case when the entire fingerprint is translated and rotated
versus a situation where two parts of the fingerprint are translated and rotated independently. (The latter would
not happen in real life, of course, but this increases the chances of an impostor fingerprint getting matched.)

The third option is to brute-force through all translation and rotations (in some quantized way) on the
candidate fingerprint and then use the existing matching algorithms of fuzzy vault or Pinsketch. The advantage
of this scheme (over the previous option) is that in this case the matching does use consistent global information
about the fingerprint. However, this scheme is slow and hence undesirable in practice.

In this work, we combine the second and the third options. We store the relative distance between points
in triplets of triangles, which are translation invariant. However, we store the angles as-is. That is, this scheme
is translation invariant but not rotation invariant. While matching, we consider many possibilities of rotation
values. This cuts down on search space for translations while still allowing us to have some success in in
deterring impostor prints from having a high overlap. The final piece is to store the hashes for not just the
enrolled fingerprint but as for the set of rotated fingerprints, where the rotations come from a pre-determined
set. (This increases the space requirement but significantly increases the matching accuracy.)

It turns out that the scheme as stated above is not secure. In particular, a simple brute-force algorithm suffices
to break the above scheme since, for our parameter settings (which seem to be needed to get good matching),
one can just enumerate all possibilities for the triangles. To get around this issue we consider triplets of triangles
instead of the triangles themselves. This increases the search space and rules out the näıve brute-force search
attack. In Section 4, we provide a formal security analysis of our scheme. In particular, we prove the security



of our scheme under the assumption of honest-but-curious parties and under the random oracle model (i.e., we
assume that the SHA-256 function behaves as a completely random function). We also assume that the initial
distribution of fingerprints is uniform. Although this is a strong assumption, it is a universal fact that any secure
fingerprint matching scheme must deal with. Finding a scheme which can create this needed uniformity is a
constant effort of our research. In absence of perfect uniformity in our current system, following Scheirer and
Boult,3 we consider our system when FAR is 0. (As if FAR is non-zero, then 1/FAR is an upper bound on the
number of steps an adversary needs to break the hash.) However, we also present the Half Total Error Rates
at the traditional score threshold to point out that our system can (if the user so desires) work with reasonable
matching accuracy, but with no or negligible security.

Finally, we would like to point out that, once we have the intermediate collection of triplets of triangles,
nothing stops us from using a hash function other than SHA-256. In particular, it is natural to wonder if one
can use the fuzzy vault. For comparison, we also implement our scheme with the fuzzy vault, which achieves
identical matching numbers as our scheme above with two significant disadvantages. First, there is no security
guarantee for this scheme. Second, if we want to increase the security, say in the sense of our earlier paper,6

then the space requirement for the hash function is huge. In particular, for each fingerprint (whose size is about
half a kilobyte), each hash value would be of the order of several gigabytes!

2. RELATED WORK

The majority of the algorithms proposed for creating privacy preserving fingerprint templates operate with
minutia based fingerprint templates. The challenges in matching sets of minutia corresponding to two fingerprints
include their variable size and coordinate changes due to skin deformation. In order to deal with these challenges,
a common strategy of minutia subset matching is employed: subsets containing a few neighboring minutia are
found, the candidate pairings of such subsets in two fingerprints is performed in the first step of matching
procedure, and the pairs of matched subsets are grouped for the final match result in the second step. Such
strategy assumes that the matching of local neighborhoods is readily approximated by the affine transformation,
whereas the matching of whole fingerprints is not. The minutia subset matching strategy has been used for
traditional fingerprint matching,13 as well as, for fingerprint indexing.14 The goal of the current paper is to
construct privacy preserving fingerprint templates utilizing a similar minutia subset based approach to matching.

Possibly one of the most studied systems for template security in fingerprints is the fuzzy vault. Nandakumar
et al.4 present a fuzzy vault implementation with probably the best known accuracy. To help with alignment,
the authors store a “hint” in a high-curvature datum in the locked vault to assist with alignment. The security
of the fuzzy vault can be described using pre-defined attacks and entropy measures.15 This system does perform
better than ours in terms of matching accuracy, though it is uncertain if storing the high-curvature datum in
the clear affects the security of the system.

Nagar et al.16 showed that the matching accuracy of the fuzzy vault system can be improved without
sacrificing security by utilizing minutia descriptors. These descriptors capture data from the area surrounding
each minutia point. This data is not stored in the vault, yet it used for locking and unlocking the vault. Since
it is not stored, an attacker presumably must guess all the bits of this data so the entropy of the vault will be
increased by the number of bits used. They show that the vault will have a reasonable amount of entropy in the
average case with their setup.

Each single minutia in the fingerprint template corresponds to a point in the fuzzy vault in traditional fuzzy
vault implementations.4,16 Consequently, the matching of fuzzy vault is analogous to full minutia set matching
and does not involve local minutia subsets. To bypass the inherent limitation of such a matching approach,
the algorithms incorporating local minutia subsets in the fuzzy vault have been proposed as well. Hartloff et
al.7 used local configurations of 5 minutia positions to extract rotation and translation invariant features, which
were concatenated to form a point for fuzzy field encoding. In addition to eliminating the need for storing
alignment information needed for traditional fuzzy vaults, this method also utilized a subset matching strategy
- the matching of local minutia subsets is equivalent to matching corresponding points in the fuzzy vault. Due
to using rather large minutia subsets and the ability to match only a small number of them in two fingerprints,
the presented method needed to use small degree encoding polynomials and, as consequence, a large number of



chaff points to preserve the security properties. In addition, this work used multiple fingerprint reading during
the enrollment phase which increases the matching accuracy.

The privacy preserving methods incorporating the subset matching strategy and not involving fuzzy vaults
have been proposed as well. Kumar et al.17 perform non-invertible transformation of local minutia k-plets (k =
3, 4) by means of symmetric polynomial functions. The resulting hashes from two fingerprints are subsequently
used to calculate global transformation parameters (rotation and translation), as well as the confidence of the
match between two fingerprints. Ferrara et al.2 converted minutia neighborhoods of pre-determined radius to the
feature vectors of fixed dimension (minutia cylinder code, or MCC, representation), and subsequently performed
randomized projection of such feature vectors to get the non-invertible hashes. Such local hashes can be matched
in two fingerprints, and the global matching score is calculated as a combination of matching scores between
local hashes. Due to loss of information during the non-invertible transformations of local neighborhoods, both
these methods report decreased matching performance relative to original matching algorithms.

In the algorithm proposed in the current paper we investigate the minutia subset matching strategy. In
contrast to the above referenced non-fuzzy vault methods, we construct non-invertible transformations using
cryptographic hashes with well defined security properties. Also, we are not constructing hashes of individual
neighborhoods, but of their combinations. Although our algorithm is similar to the fuzzy vault method utilizing
translation invariant features of minutia neighborhoods,7 we avoid storing non-encrypted geometry informa-
tion in the database (thus avoiding database cross-reference attack vulnerability of fuzzy vaults18) and require
significantly less memory per template due to not storing chaff point information.

Li et al.19 present a secure fingerprint system that utilizes triplets of minutiae points to extract rotation and
translation invariant information from the the fingerprint and secures them with a fuzzy commitment scheme.
The system also stores user specific data as public information that is generated during the enrollment process.
This scheme reports ZeroFAR’s (FRR when FAR is 0) as low as 10.3% and 4.58% for FVC2002-DB1 and
FVC2002-DB2 respectively. The numbers are enhanced by utilizing multiple fingerprint readings for enrollment
and testing and testing. For the FVC databases, 4 readings are used for enrollment and the remaining 4 are used
for testing. Since the proposed system uses only 1 reading for enrollment and 1 reading for testing, it is difficult
to compare the matching performance of the two systems.

3. SYSTEM OVERVIEW

Figure 1 presents an overview of our matching algorithm. In the rest of the section, we will elaborate on each
of the tasks. Specifically, we describe first how we form triplets from individual minutia points of a fingerprint,
which we will call a triangle. We then combine three of these triangles into what we call a triplet of triangles.
Next, we describe the manner in which we consider all rotations of the triplets, which we then quantize. Finally,
we describe how to produce a match score using standard hash functions. This scheme is invariant in translation,
but variant, by design, in rotation.

The hash scheme for the enrollment fingerprint is the same as the one described below without the scoring
function. (That is, in Figure 1, we will do everything until the step where we have to compute a score.) In
particular, we note that this implies that the fingerprint is stored as a set of hashes of quantized triplets of
triangle overs the set of pre-determined rotations.

A fingerprint is represented as a set of n minutia points, or major features. These major features are, for
example, ridge endings, ridge bifurcations, or islands. A minutia point consists of an x value, y value, and a θ
value, where θ is the direction of the ridge at which a minutia point is located, measured relative to the x-axis
of the scan.

3.1 Formation of Triangles and Triplets of Triangles and Rotation

For a fingerprint we form triangles, a group of three minutia points, from each of the n minutia. We do this
by considering a minutia point and the next two closest minutia points. For security, we use triplets of these
triangles. If we were to use all of them, there would be

(
n
3

)
triplets of the n triangles. In practice this quantity

is too large, and so instead we form triplets in a more local manner as follows. For each triangle, we choose
the closest k neighboring triangles and form all

(
k+1
3

)
triplets. In order to call a fingerprint a match with the



Group Triangles 
into 

Triplets of 
Triangles

Quantize and 
Hash Triplets 
of Triangles

Build Individual
Triangles

Make All 
Rotations

Input Test 
Fingerprint

Scoring
by Set 

Intersection

Input Enrolled
Fingerprint Hash 

Set

Figure 1. Overview of System Process

enrolled fingerprint, a certain number of these triplets must match between the two fingerprints, which is another
threshold we will discuss.

Build Individual Triangles: First, we construct the individual triangles from the set of minutia points. Each
minutia point is considered individually and is converted into a triangle with its two closest neighbors. The
two closest neighbors are those with the smallest Euclidean distance, in x and y, to the minutia point in
consideration. With these three points, the original plus the two closest, we will construct a triangle. We
label the three points p0, p1, and p2, which we will order in a deterministic manner as follows. The minutia
point with the smallest x value is labeled p0. Ties in the value of x are broken consistently, with the point
with the larger y chosen to be p0. Of the two remaining points, that with the larger y value is chosen to
be p1, and the remaining point is p2. In the case of ties between y values when distinguishing p1 and p2,
the algorithm chooses the point with the smaller x value to be p1. Next, we translate all three points such
that p0 is located at (0, 0) by subtracting the x and y values of p0 from all three minutia points. This
maintains the distance between the points, but allows us to compare triangles more easily. This distance
property creates triangles that are invariant in translation, but variant in rotation. The rotation variance
exists because we did not consider the θ values of the minutia points in triangle construction (as well as the
fact that the x and y values of the points p1 and p2 change with rotation). An example of the construction
of an individual triangle is seen in Figure 2.

For each individual triangle we then calculate the center point, an important and descriptive piece of data
that will be used in the grouping of triangles. We call the center of the triangle to be the average x value
and the average y value of the three minutia points.

This returns one triangle, ti, 0 ≤ i ≤ n, per minutia point, so there does exist some overlap of triangles
in their entirety. This overlap will be considered carefully when grouping triangles during the building of
triplets in order to prevent certain attacks from compromising our system.

Group Triangles Into Triplets of Triangles: After the set of triangles has been constructed for each fin-
gerprint, we group these triangles into sets of size three in a deterministic manner as follows. We will
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Figure 2. The first arrow shows a sample formation of a triangle from a minutia and its two nearest neighboring minutia.
The second arrow shows that the triangle is translation invariant with the leftmost minutia at the origin, but is not
rotation invariant.

change the representation of a fingerprint from a set of triangles, {t0, ..., tn} to a set of triplets of triangles
{T0, ..., TN}. Given n constructed triangles, instead of considering all

(
n
3

)
triplets, we instead employ a

more local approach. For each triangle, we find the closest k triangles in Euclidean distance, measured
from the centroid of the triangles, and form all

(
k+1
n

)
triplets of these subsets. This saves on computation

time, yet does not negatively impact matching later.

Similarly, if a triplet of triangles is composed of less than a certain number of minutia points v, we will
disregard the triplet and not use it in any matching. As described in Section 4, there exists a possibility of
a triplet of triangles constructed with only 4, 5, or 6 distinct minutia points. A triplet of this type can be
used to compromise the security of the system. Therefore, we discard triplets composed of 6 points or less.
However, this impacts the matching accuracy, so we have included the results of tests done using various
thresholds for the minimum number of points in each triplet of triangles. This is illustrated in more detail
in Section 5.

Each fingerprint is now uniquely represented by a set of triplets of triangles, {T0...,TN}, where each Tj is
a set of three triangles, {tj0 , tj1 , tj2}.

Make all Rotations: It is likely, however, that different fingerprint readings will be taken at different angles.
We perform a series of rotations to assist in the matching process. This accounts for the fact that the
triangles are not rotation invariant, even though they are translation invariant.

In each triangle, the rotation angle is added to the θ values associated with p0, p1, p2, and the rotated x and
y coordinates of these points are found using trigonometric identities. After each triplet is rotated using
this method, a new rotated fingerprint is formed. Note that we reapply the method above for determining
the ordering of the points p0, p1, and p2, since the order of the points could change after rotation.

We rotate the fingerprint from −50◦ to 50◦ by intervals of 2◦, so the total number of rotations is d = 101.
After we finish all of the rotations on the fingerprint, we take the triplets found for each rotation and
quantize, concatenate, and score the test fingerprint as described below.



3.2 Quantize and Hash Triplets of Triangles

Once we have a representation of each fingerprint as a set of triplets of triangles rotated at each rotation,
{T0, ..., Tk}, where k ≤ N · d,∗ we quantize these triplets into elements of F2q (where q is determined by the
binning parameters) as follows:

Binning: First, we quantize the individual triangles of the set by quantizing its individual elements. We take
a triangle t = (x1, x2, y1, y2, θ0, θ1, θ2) as in Figure 2 and quantize each component using three binning
functions, one each for x, y, and θ. We note that using fixed-width bins does not achieve uniformity in the
quantized space, so we use variable-width bin thresholds to get close to uniformity. These bin thresholds are
determined experimentally by finding uniform bin volumes and outputting variable-width bin thresholds
that achieve these fixed volumes. These thresholds are found by fitting the desired number of bins to the
data from the first database (DB1) from the 2002 Fingerprint Verification Competition (FVC2002). The
thresholds are then tested with the other databases from the same year. This near-uniformity is necessary
to maximize the entropy of the quantized triplets; a necessary condition for security.

Quantizing a Triangle: Let Fq denote the finite field with q elements. Each x value is quantized to an
element of F2p (where p = dlog2(Number of x bins)e). Each y is quantized to an element of F2r (where r =
dlog2(Number of y bins)e). Each θ is quantized to an element of F2s (where s = dlog2(Number of θ bins)e).
After each value is quantized, the triangle t is formed by concatenating these values in the order listed
above. So we have each triangle t = x1 ◦ x2 ◦ y1 ◦ y2 ◦ θ0 ◦ θ1 ◦ θ2. The x values will always be positive
values, whereas a y value can cover a wider range of values since it can be either positive or negative.

Quantizing the Triplet: Next we concatenate the three triangles in a triplet by a deterministic ordering as
follows. With each triangle, we store its original (non-translated) center point in the fingerprint tcenter =
(xcenter, ycenter). The average of the three center points of the triplet is taken to find the center point
of triplet Tcenter = (Xcenter, Ycenter). We then order the triangles by closest Euclidean distance from the
triangle center to the center of the triplet,

dist(tcenter, Tcenter) = ||tcenter − Tcenter||2

and concatenate the three triangles in this order, yielding our final quantized value

Q = t1 ◦ t2 ◦ t3

where
dist(t1center , Tcenter) ≤ dist(t2center , Tcenter) ≤ dist(t3center , Tcenter)

In the event of a distance tie, we break the tie arbitrarily by declaring the triangle with the leftmost center
to be closer. After this quantization process, we now have each fingerprint represented as a set of values Q
where Q ∈ F2q , where q = 6 · p+ 6 · r+ 9 · s. We multiply p and r by 6 because within a triplet of triangle
there are 6 x values and 6 y values. We multiply s by 9 for a similar reason; within a triplet of triangles
we consider 9 θ values, three from each triangle. We then append the user’s publicly stored 256-bit salt to
the end of this value and hash the entire result using SHA-256. This gives us our h(Q) value. In theory
any provably secure hash function will work for this purpose. This is for security and is discussed in detail
in Section 4. We also have timing tests for this process in Section 5.

3.3 Scoring

Each fingerprint is uniquely represented as a set of triplets of triangles, now quantized and hashed to h(Q)
values. We find the level of matching between prints via a scoring, determined by the set intersection of the
hashed quantized values.

∗We note that in practice, k is usually much smaller than this, since we do not allow duplicate triangle triplets in the
set. This is because it takes up considerably more space while not improving matching numbers. It also does not impact
our security since an adversary would not need to guess any particular triangle triplet more than once. See Section 4 for
more details.



Scoring by Set Intersection: To score the fingerprints, a basic set intersection method is used. The set
of h(Q) values that were found in the quantization and hashing process are now compared across two
fingerprints, f1 and f2. If h(Q1) = h(Q2) for some Q1 in f1 and Q2 in f2, it is considered a match and the
intersection score is increased by one. Thus, for two fingerprints to have a score greater than 0, there must
be at least one matching triplet of triangles between them after the hash is implemented. We consider two
fingerprints to be a match when the set intersection score is greater than or equal to a given threshold.
Using the binning parameters from above, we experimentally determine this threshold to be one.

3.4 Fuzzy Vault

For comparison purposes, we also generate matching numbers given by the fuzzy vault system.11 To do this, the
fingerprints are enrolled using the same quantization as in the triplets of triangles scheme, with 100,000 chaff
points per fingerprint.

The Fuzzy Vault system first generates a polynomial p of degree z, then calculates p(Q) for each quantized
triplet of triangles Q. These values are recorded, along with random chaff values. To unlock the vault, one
first takes each triplet of triangles Q′ in the fingerprint attempting to unlock the vault and determines finds if
a corresponding point for that value exists in the vault. The unlocking algorithm then takes all points found
this way and attempts to use Reed-Solomon decoding techniques to find the interpolating polynomial. If enough
genuine points were found, then the output of the above will be the original polynomial.

The fuzzy vault security parameter was defined by Hartloff et al.6 to be

λ
def
=
√
cz − g, (1)

where z is the degree of the polynomial, c is the number of chaff points, and g is the number of genuine points.

4. SECURITY

Here, we formally analyze the security of our proposed scheme. We first define the model of adversary we are
working under. We also mention how we overcome the multiple authentication server vulnerability that hinders
the fuzzy vault scheme, as pointed out by Scheirer and Boult.3

4.1 Adversary models

Our security setting and adversary model are similar to the ones considered in the conventional fuzzy-vault-
based authentication schemes.4,16 The security threats faced by our proposed biometrics authentication scheme
primarily come from the employment of untrusted (third-party) servers for our authentication service. In practice,
those servers could either be naturally malicious or compromised by some external adversaries. We will examine
the security of our scheme against so-called honest-but-curious servers; that is, servers that always follow their
protocol specification but try to silently recover the users’ fingerprint templates.

Hence, the system security is defined in terms of the users’ privacy — whether or not the enrolled fingerprint
templates are kept confidential. Our analysis is conducted in the random oracle model, where SHA-256 is viewed
as an ideal random function that responds to every unique query with a uniformly random response expect
that it responds with the same hash digest to the same query. Assuming the triplets of triangles are uniformly
distributed, we give the following security definition:

Definition 4.1. Let k ∈ N be the cardinality of the triangle triplet set. We say a single user’s fingerprint
template is (τ, ε)-private if for all non-uniform τ -time adversaries A, the winning probability in the game where
the challenger samples k random triangle triplets (Q1, . . . , Qk)← (F2q )

k and a salt salt← {0, 1}256 is

Pwin := Pr [A(H(Q1 ◦ salt), . . . ,H(Qk ◦ salt)) ∈ {Q1, . . . , Qk}] ≤ ε .

The output of the adversary A is defined as an element of F2q . Namely, given the emulated hash digests, we
consider that the adversary wins if he or she is able to guess one of the triplets of triangles correctly.



4.2 Security analysis

Suppose SHA-256 is collision-resistant. We consider the hash digests of distinct values in our scheme to be
collision-free with overwhelming probability. We will first analyze the strength of our scheme’s security in terms
of a single user’s privacy as defined above; then, we will discuss the scenario of a simultaneous attack against
multiple users.

Theorem 4.2. The proposed scheme in Sec. 3 is (τ, 1 − (2q−k
τ )

(2q

τ )
·
(

1− k
2q−τ

)
)-private for any single user’s

fingerprint template in the random oracle model.

Proof. In the random oracle model, the distribution of the hash digests H(Q1 ◦ salt), . . . ,H(Qk ◦ salt) is
computationally indistinguishable from k random values sampled uniformly from the hash domain, i.e.

(r1, . . . , rk)← ({0, 1}256)k

Hence, the hash digests do not reveal any dependency of its corresponding input values (triplets of triangles),
and the only way that an adversary can get a correct triplet of triangles is through an exhaustive search; that is,
by inputting every possible value into the hash function and comparing the output with the target hash digest
candidates in the database. Assuming each hash evaluation takes 1 unit time, we have

Pwin(τ) = Pr[hit] · 1 + (1− Pr[hit]) · Pr[guess]

=

k∑
i=1

(
k
i

)(
2q−k
τ−i

)(
2q

τ

) +

(
2q−k
τ

)(
2q

τ

) · k

2q − τ

= 1−
(
2q−k
τ

)(
2q

τ

) · (1− k

2q − τ

)

where Pr[hit] is the probability that the adversary can get at least a match within τ attempts (which by the

hypergeometric distribution is given by
∑k
i=1

(ki)(
2q−k
τ−i )

(2q

τ )
) and Pr[guess] is the probability of correctly guessing a

member of the set if none of the hashes match (which is k
2q−τ since there are k correct choices out of 2q − τ

possibilities).

Theorem 4.2 gives a tradeoff between τ and ε (as in the security definition). However, since there are many
parameters involved, next we combine both of these to compute the expected time before an adversary can break
our system.

Corollary 4.3. The adversary can break the system only in at least 2q−4

k steps in expectation.

Proof. Note that the expected number of steps before the adversary “wins” is lower bounded by Pwin(τ) · τ
for any τ ≥ 1. We show in Appendix A that for τ = 2q−2/k, we have Pwin(τ) ≥ 1/4, which leads to the claimed
result.

Furthermore, a unique 256-bit salt is assigned to each user during enrollment and is stored on the server
in plaintext. By appending such salts to the end of the triplets of triangles before hashing, we ensure the
orthogonality of the search space among different users when the adversary tries to recover multiple users’
fingerprint templates simultaneously. Note that, without such salts, one evaluation of SHA-256 can be used to
match all the hash digests of all the users in the entire database. Thus, the adversary might gain tremendous
advantage by doing this. By appending the salt, search effort spent on one user’s case does not help the adversary
attack the other users’ fingerprint templates. Therefore, we have reduced the scenario of attacking multiple users
to the scenario of attacking a single user.

Another subtle issue is that, in reality, the distribution of the fingerprint templates is not uniform, and each
fingerprint minutia point has very limited entropy (bits). As such, the adversary is motivated to brute force
fingerprint minutia points and derive triplets of triangles from the guessed fingerprint minutia points instead of
directly brute-forcing the triplets of triangles. To prevent such attacks, our scheme filters out all the triplets of



triangles that are derived from less than v minutia points, where v is the system-level security parameter, say
v = 7. The optimal choice of v depends on the other system parameters; we seek to ensure that each triplet of
triangles is derived from minutia points that contain at least m bits of entropy. If attacking the minutia points
directly leads to a higher Pwin in the previous analysis, then this attack could prove more effective than the one
above. Specifically, if we are not careful in our choice of m and v, the system is

(τ,max(1−
(
2q−k
τ

)(
2q

τ

) · (1− k

2q − τ

)
, 1−

(
2mv−k
τ

)(
2mv

τ

) · (1− k

2mv − τ

)
)−private

This analysis is an upper bound that assumes all k hashes are derived from triplets of triangles made from
exactly v minutiae points and uses the same analysis as before, but guessing minutiae instead of triplets of
triangles. There are typically much fewer than k such triplets making the actually security better than this
bound.

Note that the above implies that the security of our system is given by the following version of Corollary 4.3

Corollary 4.4. The adversary can break the system only in at least 2min(mv,q)−4

k steps in expectation.

In our experiments, we will choose parameters so that

mv ≥ q.

4.3 Multiple database scenarios

One advantage of our proposed scheme over the conventional fuzzy vault based schemes is the sustainability of
our system’s security if the authentication scheme is deployed on multiple different servers. In particular, it is
well known that the security of the fuzzy vault system may be breached if the same user enrolls with multiple
authentication servers.3 However, as long as the uniqueness of the 256-bit salt is guaranteed, our authentication
scheme in the multiple database scenario maintains the same security level as it does in the single database
scenarios. Due to the birthday paradox, it is easy to see that the collision probability of the 256-bit salts is
negligible for any number of users in any foreseeable real-world application.

5. EXPERIMENTAL RESULTS AND DISCUSSION

We begin with a discussion of experimental results achieved by the hash scheme, which calculates scores by exact
matching on sets of SHA-256 hashes of triplets of triangles. We show False Acceptance Rate (FAR) vs False
Rejection Rate (FRR) curves for all four databases from the FVC 2002 competition with parameters that were
derived experimentally, as well as requiring all triplets of triangles to contain at least 7 distinct minutia points
(as is necessary for security as discussed in Section 4). We also present the security at the given parameter set.
We then analyze the significance of choosing 4− 9 minimum distinct minutia per triangle triplet and its effects
on matching performance through a table of Half Total Error Rate (HTER) and FRR at the thresholds where
the FAR = 0 (ZeroFAR) values. We show that this choice does have some impact on matching performance for
the given set of binning parameters. However, this effect is small in comparison to the loss of security due the
lack of initial entropy for v = 5 (see Table 3 for details).

We also show timing results for the average time for a single match scoring between two fingerprints, both
with and without appending the user’s salt to the quantized triangle triplets and hashing them with SHA-256.
Doing this costs 1.7 milliseconds, a negligible amount of time.

We then present experimental results using an updated fuzzy vault scheme on triplets of triangles from
Section 3. We show that for fuzzy vault on triplets of triangles we achieve comparable matching numbers, but
at the expense of security and the additional space required to store millions of chaff points. Fuzzy vaults also
have security issues when the same fingerprint is stored in multiple databases. This is because an attacker could
compare vaults (which use random chaff points) and greatly decrease the number of chaff points by taking the
intersection of the two vaults.

We conducted the experiments on the four fingerprint databases from the Second International Fingerprint
Verification Competition (FVC2002/DB1-DB4) by finding large curvature points on the contours extracted



from the binarized fingerprint images.20 Additionally, to improve the performance of minutia extraction, the
fingerprints were enhanced by the short time Fourier transform algorithm.21 We also remove suspect spurious
minutia points by removing all points within a euclidean distance of 5 from each other. A standard testing
protocol for calculating all possible 2800 genuine (100 persons with 8·7

2 matches) and 4950 (1 print of each
person matched against 1 print of another, or 100·99

2 ) impostor matches has been used.

5.1 Hash Scheme with Triplets of Triangles

Experimental Parameter Results across Databases: Here we present False Acceptance Rate (FAR) ver-
sus False Rejection Rate (FRR) plots for all four FVC2002 databases using the same parameters for each.
The parameters we used are forming triplets with the seven closest triangles, five x bins, five y bins, and
five θ bins as well as a minimum of v = 7 minutia per triangle triplet. In our settings, we have q = 63 and
k = 11256, which by Corollary 4.3 implies that the expected number of steps that an adversary needs to

make is at least 263−4

11256 ≈ 245.5. The binning thresholds for each parameter are variable in width in order
to achieve near-uniformity in the quantization. These thresholds were fit to a training sample which was
comprised of 25% of each database and then used across all four databases.

Traditionally, the Equal Error Rate (EER) is the point where the error rates intersect; however, in this
context, this formulation of EERs is not well defined as our scores are discrete and the intersection often
falls between these discrete scores. To remedy this, we present the Half Total Error Rates (HTERs) as the
average of the FAR and FRR at the first discrete score after the rates cross. Due to the strictness of our
system, the FRRs are high but the FARs are low at the HTER: see Table 1. Also, as described by Scheirer
and Boult,3 the system security can only be by as low as the FAR. Since we claim such high security, and
test on a small sample, we also report the FRR at the ZeroFAR. At this threshold, an adversary would
not be able to attack specific users by simply submitting random fingerprints with a user’s salt appended
until access is granted.

We would like to clarify that we do not claim that the security analysis from Section 4 applies at the
HTER point. This is because at this point FAR is non-zero and as mentioned above is not secure. Rather
our rationale for presenting HTER (along with results at ZeroFAR) is the following. A user that is not
too concerned about security could use our system at the HTER points, where one gets higher matching
accuracy. However, a user who is more concerned about security should use our system at the ZeroFAR
(and also pick parameters that along with ZeroFAR also is secure as per Section 4). Thus, our system has
this flexibility built in, which makes it more “tunable” to a user’s requirements.

Score = 1 DB1 DB2 DB3 DB4
FAR 0.0061 0.02101 0.0000 0.0055
FRR 0.1933 0.1135 0.5594 0.3764

Table 1. Summary of the results of running our algorithm on the FVC2002 databases. In the results presented here, the
fingerprints are matched requiring at least 7 points used in the construction of triplets of triangles.

ZeroFAR DB1 DB2 DB3 DB4
FRR 0.3007 0.2448 0.5593 0.5825
Score 4 8 1 6

Table 2. Summary of the ZeroFAR results of running our algorithm on the FVC2002 databases. In the results presented
here, the FAR = 0 and the fingerprints are matched using the same system parameters used in Table 1. We see that
the score threshold for acceptance tends to be higher, increasing the strictness of the system. However, these thresholds
provide increased system security.

The differences between HTERs on the different databases is reflective of the relative difficulty of the
databases as seen in Figure 3. Also this choice of parameters is used to increase security, while minding



(a) DB1 (b) DB2

(c) DB3 (d) DB4

Figure 3. FAR and FRR graphs for DB1-DB4. The FRR in the legend is the FRR at the ZeroFAR. We show that the
system is relatively strict, with low FARs and high FRRs at the HTER, where the threshold score is one. This strictness
is caused by the trade off of using more quantization bins for increased security. Less bins can be used, but have been
shown to only thin the gap between the two curves at the score 1 (increasing the FAR while decreasing the FRR), and
achieve very similar HTERs.

experimental matching performance. Experimentally, we find that more quantization (using fewer bins)
does not improve the HTER, but only thins the gap between the FRR and FAR by increasing the FAR
and decreasing the FRR. However, less quantization (using more bins) than the above parameters gives
us increased security, but at the cost of matching performance. So we settle on these parameters as the
optimal tradeoff between performance and security.

Next, in Figure 3, we present a set of ROC curves, using the same set of parameters as above, and show
that the choice of minimum number of minutia points per triangle triplet has relatively small effect on
matching performance for triplets with 4, 5, or 6 minimum points. Recall from section 4 that the minimum
number of points v can affect our security (which is only valid for the ZeroFAR thresholds). Since we are
using 3 bits each for x, y, and θ, we compute the entropy of a point m to be 9. Since we have q = 63, we
need v = 7 to get the maximum security possible from this field size (recall Corollary 4.4). We do suffer
some decrease in security at 4, 5, and 6, though the matching accuracy is not affected much at these values.

Here we show that there is some impact on matching performance when using v = 4 instead of v = 7 as
the minimum number of distinct minutia per triangle triplet. Recall from Section 4 that using a triplet of
triangles can be formed by 4, 5, or 6 minutia. Allowing these possible configurations prevents the scheme
from achieving maximum security as, in the case of v = 4, we have

m · v = 9 · 4 = 36 < q = 63



v 4 5 6 7 8 9
HTER 0.0710 0.0504 0.0532 0.0673 0.1100 0.2131

ZeroFAR 0.3068 0.1522 0.1625 0.2448 0.3208 0.4844

Table 3. Summary of the results of running our algorithm on the FVC2002 DB2 database for the various number of
minimum distinct minutia per triangle triplet. We present the HTER where the FRR and FAR cross and the FRR where
the FAR = 0. We show that there is some improvement on matching performance when we choose to allow more possible
triplets of triangles configurations, but the best matching at v = 5 with an HTER of 0.0504 when compared to our secure
value of v = 7 and the corresponding HTER of 0.0673 is not enough to outweigh the loss in security.

thus the choice v < 7 has a more significant impact on security than matching performance, since the
difference in HTERs is at most 1.7% and the difference in FFRs at the ZeroFAR are at most 9.3%, whereas
the difference in initial entropy is approximately 43%.

Hash Scheme Timing: Here, we show that the extra computation required for appending a user’s publicly
stored salt and hashing the resulting value using SHA-256 is only 1.7 milliseconds. We average the timing
for the scoring function between two fingerprints over a test of the entire database (7750 in total) both with
and without appending the salt and hashing the resulting value. For matching by simple exact matching
on quantized values Q ∈ F2q , we found that the scoring function takes 0.9319 seconds on average. For exact
matching on hashes of values computed with appending a user’s 256-bit salt to the end of these quantized
values, we found that the scoring function takes 0.9336 seconds on average, for a difference of only 1.7
milliseconds per match attempt.

The machine that these timing values are calculated on is an Intel Core i5-3317U CPU, clocked at 1.70GHz
× 4 with 4GB of DDR3 RAM. Currently our program resides exclusively in RAM which does improve data
access time. Future work will be conducted to include using an indexed database for data access.

5.2 Fuzzy Vault with Triplets of Triangles

We also ran the fuzzy vault system on triplets of triangles on the FVC 2002 databases. In all cases, this is with
the system configured such that z is 1, while the number of chaff points is 100, 000. The matching results are
identical to those in Section 5.1. We note that at the score of 1 for the HTER, we have no security for fuzzy
vault.

However, the security of the system at these parameters is non-existent in practice. Experimentally, we
have determined the average number of quantized triplets of triangles over all rotations to be 11, 256 in a single
fingerprint, while the value of z that obtains this HTER is 1. Recall the formula for fuzzy vault security from
(1). This means that, in order to make λ positive, let alone large enough to guarantee reasonable amounts of
security, there must exist millions of chaff points (see Section 5.3 for more details). While these chaff points
could theoretically be added without significantly impacting the accuracy of the fuzzy vault, doing so over the
entire database requires too much memory for such an approach to be practical.

5.3 Discussion and Comparisons

From the results we see that the two schemes from Section 3 are the same with respect to matching accuracy.
This is the intuitive result, as in both cases we are in effect finding the set intersection of the enrolled and test
fingerprints.

However, where these schemes differ is in their measures of security. For the hash scheme we use standard
cryptographic hashes over a large initial field size to achieve security, whereas the fuzzy vault scheme uses chaff
points and the degree of the encoding polynomial to achieve security. The main issue with the fuzzy vault scheme
is at the optimal matching parameters, where we have a matching threshold of z = 1 and tens of thousands of
quantized genuine values g. This forces the number of chaff points to skyrocket in order to achieve a positive λ
(security) value.



For example, take a fingerprint that, when quantized, becomes represented as a set of k = 11, 256 quantized
triangle triplets (which is the average over the DB1-DB4. To achieve a λ ≥ 0, this would mean we need

0 ≤
√
c · 1− 11, 256,

that is
c ≥ 126, 697, 536

recalling that c is the number of chaff points required in the vault.

The above is not the worst-case scenario for the number of elements in the fingerprint set, and also is only
for λ ≥ 0. In practice, we would need a much larger λ (say 80). The main issue with ramping up the number
of chaff points per vault is the space required to store this many points is too large. The size of a point in the
vault requires 16 bytes. Now adding the the original 11,256 quantized triplets we have

126708792 · 16 = 2027340672 B

or
≈ 2 GB per hash.

Now we consider the space requirements of our scheme. A SHA-256 hash of any value produces a digest that
is 32 bytes. Using the same number of hashes as the analysis above, we have

11, 256× 32 = 360, 192 B

or
≈ 356 KB per hash.

Clearly our scheme has the advantage in total storage space needed.

With regards to fuzzy vault, let us not forget that there is also the issue of enrolling multiple fuzzy vaults
of the same fingerprint in different databases. In this situation, an adversary could simply take the intersection
of the two vaults to significantly reduce the number of chaff points (since they are random by design). The
proposed hash scheme, which uses SHA-256, does not have these drawbacks and is therefore more secure. With
further experimentation and innovation, including the ideas proposed in the future work Section 6, this scheme
has the potential to provide real, secure fingerprint matching.

6. FUTURE WORK

Finally, we present some thoughts on how we can improve/build upon the results in this paper.

6.1 Scalability and Indexing

The tests we ran for this work were on databases with only 100 enrollees. However, a real-world system may have
millions or billions of users. In this case, our system will scale as it is well-suited for a simple indexing scheme.
Since we are storing the hashes of each triplet and performing exact matching, we can store all the hashes for all
the users in a single hash table for very efficient lookup during matching. Our later work will explore and test
this scalability. Also, our current system resides entirely on local RAM, which limits the size of the database
and the total number of users. As such, we have been developing an SQL-based on-disk hash table to allow us
to test implementations with large numbers of users.

6.2 Uniform Randomness

Getting the fingerprint template points to be uniform in the field has often hindered our efforts. We currently
use non-uniform-width bins during the quantization step so that the values are close to a uniform distribution,
but this method is time-consuming and not exact. We are currently developing a method that will apply a
separate, random permutation to each enrollee’s fingerprint template after quantization. Since the permutation
is different for each user, the resulting points in the database will be uniformly distributed in the field, solidifying
our security proofs. The primary challenge in implementing this system is to apply the permutation consistently
for each matching attempt without leaking any information and without having the user store the permutation
as a secret.



6.3 Increased Field Size

We will also investigate more ways of increasing the field size without sacrificing matching accuracy. As described
in Section 4, the security of this scheme necessitates a large field size. We achieve this by using triplets of triangles
as our fingerprint template points, but we would like to enlarge it further. One idea that we will pursue is to use
an arbitrary n-gon instead of exclusively using triangles. If we can increase the size of these polygons, they will
have more entropy and we can therefore represent them using more bits. In such an arbitrary system, the level
of security could be adjusted by altering n, providing for a tradeoff between security and matching accuracy.

6.4 Security enhancement

Security strength of our proposed scheme depends on many system parameters, so it is correlated with other
system properties such as FRR, FAR, EER, etc. (c.f. Sec. 4.) The system should provide an interface that
allows us to adjust the security strength arbitrarily. We plan to implement and benchmark the following security
enhancement mechanism. Define Hλ := H ◦H ◦ · · · ◦H︸ ︷︷ ︸

λ times

. We can replace H(x) in our scheme with Hλ(x), which

makes the adversary’s attack λ times slower. Note that this mechanism does not increase the authentication
server’s complexity (which is essential), because the hashing step is performed at the client side.

This scheme would potentially allow us to move from Corollary 4.3 as our security benchmark and talk about
a general (τ, ε)-private schemes instead of our current single value that talks about the security of our system in
expectation.

6.5 Increased Chaff for Fuzzy Vault

As mentioned above, one issue in using the fuzzy vault when using a system such as this, which has a large amount
of data enrolled, is that generating sufficient chaff to guarantee security is difficult due to time and memory issues.
One possible solution is to use a pseudo-random number generator to determine the locations and values of the
chaff points. This way, one could simulate having sufficiently many chaff points to guarantee security without
actually generating all of them. However, this would necessitate revisiting the security argument.
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APPENDIX A. A CALCULATION

Lemma A.1. For any 1 ≤ k ≤ 2q−2 and τ ≤ 2q−2

k , we have

1−
(
2q−k
τ

)(
2q

τ

) · (1− k

2q − τ

)
≤ 3

4
. (2)

Proof. Note that (2) is satisfied if (
2q−k
τ

)(
2q

τ

) · (1− k

2q − τ

)
≥ 1

4
.

Since τ ≤ 2q−1/k ≤ 2q−1, we have
(

1− k
2q−τ

)
≥ 1 − k

2q−1 ≥ 1
2 , where the last inequality follows from the

assumption that k ≤ 2q−2. This implies that the above bound is satisfied if

B def
=

(
2q−k
τ

)(
2q

τ

) ≥ 1

2
.

Now note that

B =
(2q − k)!(2q − τ)!

(2q − k − τ)!(2q)!

=
(2q − τ)(2q − τ − 1) · · · (2q − τ − (k − 1))

2q(2q − 1) · · · (2q − (k − 1))



=

k−1∏
i=0

(
1− τ − i

2q − i

)

≥
(

1− τ

2q − k + 1

)k
≥
(

1− τ

2q−1

)k
≥ 1− τk

2q−1

≥ 1

2
,

as desired. In the above the first inequality follows by noting that for 0 ≤ i ≤ k−1, τ−i ≤ τ and 2q−i ≥ 2q−k+1.
The second inequality follows by our bound on k. The third inequality follows since all the parameters are positive
integers and the final inequality follows since τ ≤ 2q−2/k.
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