
SIGCSE: U: Focused Retrieval of
University Course Descriptions from

Highly Variable Sources

Thomas Effland
∗

SUNY, University at Buffalo
tom.effland@gmail.com

Abstract

Finding topically relevant content from sparse disparate sources on the Web requires robust techniques.
A focused web crawler is a type of crawler that attempts to make predictions about page relevance and
traverse the web efficiently to retrieve relevant information. In this work, we design and test a novel
framework of focused crawling tailored to extracting semantically relevant information from disparate
seed domains with highly variant structure that do not reference each other. We utilize machine learning
techniques to predict the normalized link distance of current pages to target pages by employing two
separate Random Forest regressors that rank the current page and potential relevance gain of hyper-links.
We use a novel reformulation of page relevance as the normalized link distance to efficiently tunnel through
irrelevant pages and reach target pages with close to optimal paths for domains with large inter- and
intra-site variability. We evaluate this system on a concrete problem: retrieving relevant course description
and information pages from many university websites with little training data. We use evaluate the
training efficiency of the system using mean regression error and evaluate the retrieval efficiency in
practice using the harvest rate metric.

I. Problem & Motivation

The exponential growth of the World Wide
Web (WWW) has given rise to an explosion
of publicly accessible data in the form of un-
structured natural language text and semi-
structured hyper-text. Often we are interested
in semantically similar content that is available
in many different web domains because the
aggregate of the content can contain richer in-
formation than each individual datum. The
connections between different data sources are
commonly non-existent and a user is forced
to search for individual data items separately.
However, finding and retrieving this data man-
ually is often unrealistic at scale.

Topical crawlers are the specialization of
traditional search engines or crawlers to find-
ing relevant pages across domains: a form of
“smart” search. A topical crawler makes a ba-

sic assumption of “topical locality” within the
web that asserts that relevant pages are typ-
ically close together between sites, i.e. there
is a short link distance between them which
enables traversal across sites to find relevant
content. Here we address a different reformu-
lation of the topical crawling problem where
the topical locality assumption does not neces-
sarily hold:

How can we find semantically simi-
lar information from separate known
sources that do not reference each
other?

In this work we are motivated by the exam-
ple application of mining course information
and descriptions from multiple university web-
sites. This specific task is difficult for multiple
reasons:
• Retrieving content on one site doesn’t di-

∗Partially supported by NSF Grant DUE-CCLI-0920335

1

mailto:tom.effland@gmail.com

rectly lead to content on another site, i.e.
no inter-site topical locality.

• University websites are highly varying in
structure from one institution to the next,
so reaching the relevant information with
a general, but efficient technique is diffi-
cult.

• The highly variate structure makes identi-
fying a relevant seed page difficult. With-
out a relevant seed page, we are forced
to start at the root domain page, e.g.
www.buffalo.edu.
• Course information in university web-

sites is typically very sparse. Thus we
must significantly restrict and navigate
the search space in an efficient manner.

In many ways, this problem is akin to the
automation of mimicking a user’s browsing
decision-making process for finding relevant
content on many sites by starting at the sites’
root domains.

II. Background & Related Work

The rapid growth of the World Wide Web
presents many challenges to finding spe-
cific topical information for traditional web
crawlers. Often a crawler is targeted towards
a particular topic and is unable to find topical
information in an efficient manner. A focused
crawler attempts to make decisions on which
pages to crawl based on a classifier trained to
estimate the relevance of a page [6]. Typically,
a focused crawler represents a page using the
“Vector Space Model” in which a page is repre-
sented by a vector of features (often words) so
that a traditional classifier may be applied.

There are multiple challenges that arise for
focused crawlers. The main issue in the context
of our problem is “tunneling”, in which a rele-
vant page may only be reachable by traversing
irrelevant pages. [5] used reinforcement learn-
ing to assign credit to irrelevant pages on the
relevant path. [2] address the issue by using
a maximum depth counter that resets when
the crawler reaches a relevant page. [4] trained
a set of Naive-Bayes classifiers that attempt
to predict the link-distance the current page

is from a target page; This is called “Context-
Focused” crawling. [1] evaluates both page
content and link structure separately to predict
the best links to follow. Both [3] and [7] used
Named-Entity Recognizers to extract named-
entities as features in addition to words.

III. Uniqueness of Approach

In this work we build on previous works for
developing efficient focused crawlers and ap-
ply the techniques to a crawler that can tra-
verse highly variate, disparate sources where
the topical locality assumption from one site to
the next does not necessarily hold. Our frame-
work is designed to develop an efficient system
that utilizes two machine learning regressors
to make relevance predictions for pages and
their links with limited training data. This is
presented in four parts: the page feature repre-
sentation (input features), the page relevance
representation (target variable), the training
phase, and the deployment phase.

I. Page Representation

Web page source code provides semi-
structured information in the form of HTML.
To utilize traditional machine learning tech-
niques, we convert this original data into a
feature vector using the vector space model
(cite VSM). We use HTML tree parsing to split
a page P into a content vector ~p and a set of url
vectors U = {~u1, ...,~uk}, where k is the number
of <a> tags on the page. We then quantify these
two representational elements separately using
traditional information retrieval techniques.

Representing the Page Content

To represent the page content, we take the fol-
lowing steps:

1. Convert all the text inside the <body>,
<title>, and <a> tags into vectors~b,~t,~a
of words by splitting on whitespace.

2. Remove special characters and English
stop-words using NLTK (citeNLTK).

2

3. Stem the vectors using WordNetLemma-
tizer (cite NLTK).

4. Expand the vectors by adding in bigrams
of the terms (cite bigrams).

5. Take the TF-IDF (cite tfidf) of the vectors
to get the relative frequencies of the terms
within the document and the vocabulary.

6. For the <body> vector only: use Latent
Semantic Analysis (cite LSA) to embed
the vector in a lower dimensional seman-
tic space. This greatly reduces the size of
the input vector.

7. Take the concatenation of these three
transformed vectors as the page feature
vector ~p =<~b′,~t′,~a′ > 1.

Thus we have a numerical feature vector
that represents the content of a page. We
note that this representation is generic with
no domain-specific engineered features.

Representing the Link Content

To represent each url ~u ∈ U we extract and
segment its href attribute to get a vector of
terms~h. We also extract the anchor-text within
the <a> tag as we did for the page to get the
vector~a. We then form the final representation
~u =<~h′,~a′ > using the same sequence of steps
described above for the page representation
(excluding step 6).

Defining a Relevance Metric

To reach relevant pages from the irrelevant root
url of a site, we must identify and traverse
many irrelevant pages that lie on a path to the
relevant content. We also need to address this
issue in a way that is robust to the structural
variation of the different sites and differing
path lengths. Thus we define the target rele-
vance R of a page P to be the normalized link
distance from P to a target page T, with the
link distance from the starting page S to T as

the normalization factor.
Formally,

R(P) = 1− LinkDist(P, T)
LinkDist(S, T)

(1)

Intuitively this metric can be thought of as
what fraction of the total path length is this
page P from our target page T. In practice a
page may lie on many relevant paths and in
this case we average all of its relevance scores
for the final score.

Figure 1: Here we graphically show the relevance scores
of all of the pages on a relevant path. The
source page is the purple node, the irrelevant
pages are the yellow nodes, the target is green,
and a completely irrelevant page is white.

This relevance score may now be used in
combination with their corresponding page fea-
ture vector and machine learning methods to
make predictions about the relevance of a page.
We also define the relevance of each link ~u to
be the relevance of the page the link leads to.
Thus we may use the links to make predictions
about which pages to traverse to next.

1The length of ~p is constant and ensured through the TF-IDF and LSA transformations.

3

II. Training the System

User Marks
Sample Paths

Crawl Paths
& Nearby Pages

Training
Data

Labeled
Pages

Unlabeled
Pages

Relevance Extractor

Feature Extractors

Page Regressor Forest

Url Regressor Forest

(1)

(2)

(2)
(3)

(3)

(4)

(5)

Figure 2: Flowchart of self-training procedure for the
regressors. This iterative approach allows
for training of accurate regressors with little
manually-gathered training data.

Since the goal of this work is to automate a
manual process, we approach the problem of
learning accurate regressors with as little man-
ually gathered training data as possible. We
utilize a semi-supervised learning technique
called self-training (cite selftraining) to itera-
tively improve our regressors’ performance as
follows:

1. The user manually marks a few 2 sample
traversals from the start page to a target
page as a sequence of urls.

2. A training crawler follows these paths
and downloads each page on the path as
labeled data. The crawler also downloads
the neighboring pages (within a link of a
page on the path) as unlabeled data.

3. The features of the labeled pages and
links are extracted along with their corre-
sponding relevance metrics.

4. Two random forest regressors (cite RF)
3 are trained on these training data so
we can make predictions of page and url
relevance as defined in I.

5. The regressors are used to make predic-
tions on the unlabeled dataset. The most
confident predictions (typically the high-
est and lowest ranked 25 pages) are then
given labels of 1.0 and 0.0, respectively.
All unlabeled pages lying on paths to the
new target pages are labeled with their
calculated relevancies also.

6. Iteratively continue steps 2-5 until regres-
sors reach desired accuracy or the unla-
beled dataset is used up.

Using this technique, we are able to auto-
matically train accurate regressors with little
manually-labeled training data.

III. Deploying the System

Seed Url

Url Priority
Queue

Highest
Ranked

Page

Ranked
Urls

Page Regressor Forest

Url Regressor Forest

Page Feature
Extractor

Url Feature
Extractor

Training
Data

Retrieved
Pages

Figure 3: Flowchart of the deployment procedure. Start-
ing at the root url, the system greedily follows
the highest ranked url to traverse the sites effi-
ciently. At each page, the relevance is predicted
and the page is saved if this prediction is above
a certain threshold.

After training the regressors, we can deploy
them to retrieve pages of interest on other sites.

Beginning at the starting url, we traverse
a site by featurizing the urls on a page and
using the url regressor to make predictions of
the relevance for the page the urls lead to. We
then rank the urls by highest predicted rele-
vance and insert them into a priority queue.
To choose the next page to crawl, we simply
pop from the queue. Thus we use a greedy

2In practice, we used 10 per training site.
3We choose to use Random Forests as our machine learning regressors because they have been shown to be robust to

sparse, highly-variable data. (cite robust RF)

4

approach in traversal by consistently follow-
ing the link of highest predicted relevance in
search of relevant pages. This has the advan-
tage of being able to significantly restrict our
search space in a site.

At each page, we also use the page regres-
sor to make a prediction about the page con-
tent’s relevance. If the predicted relevance is
above a threshold (in practice we use .85), then
we classify the page as relevant and add it to
the set of gathered pages.

To continually grow the training set
throughout deployment, we utilize active-
learning (cite active learning) to query the user
for input on pages that may be confusing the
regressors. For example, the url regressor may
predict a page has a relevance of .95 while the
page regressor predicts a relevance of .25. In
this event, correctly classifying the page as rel-
evant or irrelevant may provide discriminative
information to the training set. Utilizing active-
learning, the user may periodically retrain the
system and further increase accuracy.

IV. Results & Contributions

To evaluate the system, we present two met-
rics. We first evaluate the accuracy of the page
and url regressors using absolute regression
error. We measure this as a function of the size
of the training data set as grown through self-
training. We then evaluate the efficacy of the
system in practice by measuring the harvest
rate (cite harvest rate) of retrieving relevant
course description pages on university web-
sites.

We tested on five university sites:
buffalo.edu, illinois.edu, bu.edu,
washington.edu, and northwestern.edu 4.
For each site, we marked ten sample traversal
paths from the root url to course descriptions
pages. In evaluation, we utilize hold-one-out
methods by training the system on all sites
except the site we test on.

Training Results

We evaluate the accuracy of the page and url re-
gressors using mean absolute regression error
in prediction, i.e. if the true score was .66 and
the predicted score was .60, then the absolute
regression error would be .06.

Using the 50 sample paths generates a little
less than 100 initial training examples among
the five sites. We then grow the training dataset
approximately 50 pages per iteration using self-
training. From the graph, we see that at about
550 training example the average mean page
prediction error among all five sites (repre-
sented by the thick green line) reaches .048.
A similar plot of the mean url prediction error
would show that the average among the sites
reaches .052 for the same training set. We omit
this plot due to space constraints.

0 100 200 300 400 500 600

Number of Labeled Data by Incremental Self-Training

0.00

0.05

0.10

0.15

0.20

0.25

M
e
a
n
 A

b
so

lu
te

 R
e
g
re

ss
io

n
 E

rr
o
r

Hold-One-Out Page Prediction Error with Self-Training

illinois.edu

buffalo.edu

northwestern.edu

washington.edu

bu.edu

Page Average

Best Page Average:0.048

Figure 4: This plot shows mean absolute prediction error
for the page regressor as we iteratively increase
the training dataset using self training. Each
university is represented in its school color and
the average among all five in green. The star
represents the lowest average of .048 at 542
pages. Here we see that initially the system is
quite inaccurate, but is eventually able to make
better predictions while training on other sites
through self-training.

Testing Results

We evaluate the efficacy of the trained system
in retrieving relevant course descriptions pages
using the standard metric in focused crawling:
harvest rate. Harvest rate is the fraction of

4These five sites were chosen for evaluation because they each have a different organizational structure for accessing
course descriptions, but still present the data in HTML instead of requiring database querying.

5

pages retrieved out of the number of pages
visited so far. HarvestRate = #Retrieved

#Visited .
We again test on the previously mentioned

five sites, using hold-one-out training meth-
ods. In the graph we see that we reach a har-
vest rate of almost 80% for 4 of 5 sites. This
shows the system efficiently navigating to the
content rich areas of the site. We also note
that illinois.edu is less successful. This is
because the system initially followed a pseudo-
relevant path 5 before discovering the correct
region of the site. However even in this case,
we find that the system is able to find relevant
content in less than 200 visits.

0 50 100 150 200

Number of Pages Visited

0.0

0.2

0.4

0.6

0.8

1.0

%
 R

e
tr

ie
v
e
d
 P

a
g
e
s

o
u
t

o
f

N
u
m

b
e
r

V
is

it
e
d

Out-of-Bag Harvest Rate

illinois.edu

buffalo.edu

northwestern.edu

washington.edu

bu.edu

Figure 5: This plot shows the harvest rate of the system
in deployment using hold-one-out training.
From this plot we see that the system is able
to achieve a harvest rate of 80% within about
the first 50 pages crawled for 4 of the 5 sites.
This means that 40 of the first 50 pages were re-
trieved pages these sites and shows that the sys-
tem is able to navigate to the content-rich areas
of the sites. We note that illinois.edu does
not have the same success, as the system ini-
tially followed a pseudo-relevant branch, how-
ever after exhausting this branch, the system
does eventually catch on to the course descrip-
tions area of the site.

Conclusions and Impact

In this paper we have presented a novel fo-
cused crawling architecture tailored to retriev-
ing semantically similar content from many
highly variable disparate sites with no initial
assumptions about site organization or top-

ical locality. Using self-training, we require
little manually-gathered data, yet are able to
train accurate regressors to predict page and
url relevance. The novel reformulation of page
relevance as normalized link distance is key
to addressing the issue of high organizational
variation with a general scheme. This is be-
cause instead of attempting to classify integer
link distances, which leads to binary classifi-
cation errors, we are able to encode a notion
of closeness by reframing the relevance as a
scalar.

We evaluated the training stage of our sys-
tem using mean absolute prediction error and
showed that it significantly improved its regres-
sors using self-training and was able to make
accurate predictions of page and url relevance.
We then evaluated the system in practice by
measuring the harvest rate of the trained sys-
tem. We showed that in 4 of 5 cases, the system
reaches a harvest rate of almost 80% within 50
visits and in all 5 cases the system was able
to navigate to content-rich areas of the sites
within 200 visits.

We note that this system has been designed
as a general information retrieval framework
and can be used in any scenario where the
user wants to automate the process of collect-
ing data from many disparate sources, but only
has a list of the source domain names. In the
future, this system could be significantly im-
proved by utilizing crowd-sourcing services to
generate considerably larger and more informa-
tive training datasets and produces extremely
accurate regressors. Coupled with domain-
specific information extraction tools, it may be
used to automatically generate large databases
of cross-site information.

References

[1] Chen, X., and Zhang, X. Hawk: A focused
crawler with content and link analysis. In e-
Business Engineering, 2008. ICEBE’08. IEEE
International Conference on (2008), IEEE,
pp. 677–680.

5A pseudo-relevant branch is a path with high initial predicted values, but never leads to a relevant page: a shortcoming
of the greedy strategy.

6

[2] Devi, P., and Thakur, R. Comprehensive
review of web focused crawling.

[3] Di Pietro, G., Aliprandi, C., De Luca,
A. E., Raffaelli, M., and Soru, T. Seman-
tic crawling: An approach based on named
entity recognition. In Advances in Social
Networks Analysis and Mining (ASONAM),
2014 IEEE/ACM International Conference on
(2014), IEEE, pp. 695–699.

[4] Diligenti, M., Coetzee, F., Lawrence, S.,
Giles, C. L., Gori, M., et al. Focused
crawling using context graphs. In VLDB
(2000), pp. 527–534.

[5] McCallum, A. K., Nigam, K., Rennie, J.,
and Seymore, K. Automating the construc-
tion of internet portals with machine learn-
ing. Information Retrieval 3, 2 (2000), 127–
163.

[6] Nasraoui, O. Web data mining: Exploring
hyperlinks, contents, and usage data. ACM
SIGKDD Explorations Newsletter 10, 2 (2008),
23–25.

[7] Samarawickrama, S., and Jayaratne, L.
Focused web crawling using named entity
recognition for narrow domains. IJRET|
DEC (2012).

7

	Problem & Motivation
	Background & Related Work
	Uniqueness of Approach
	Page Representation
	Training the System
	Deploying the System

	Results & Contributions

